Нейтронные оригиналы

Кладбища пульсаров

Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.

Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.

Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.

Типы нейтронных звезд

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.

Магнетары

При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.

Рентгеновские пульсары.

Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.

Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.

При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси  и  оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.

Миллисекундные пульсары.

Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в белого карлика, потеряв в массе.

Магнетары

Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения — SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один — вне ее. Эти невероятные взрывы энергии могут быть вызваны звездо-трясениями — мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение.

Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гамма-вспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями. В 1998 году внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара — нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени вполне достаточно, чтобы успело возникнуть нужное поле.

Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов в объеме нейтронной звезды, но и ее твердой коры.

Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — АХР. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и АХР являются фазами жизни одного и того же класса объектов, а именно магнетаров, или нейтронных звезд, которые излучают мягкие гамма-кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются, детищами теоретиков и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства.

Скорость их вращения может увеличиться

Скорость такого объекта непостоянна, она может изменяться в зависимости от факторов, которые на нее влияют, но такая измена скорости происходит довольно редко. Давай рассмотрим такие обстоятельства.

В редких случаях, нейтронное тело в двойной системе может поглотить плазму от своего компаньона. Этот процесс сможет изменить скорость вращения, а именно сделать ее гораздо быстрее. Также при таком явлении изменяется конфигурация, она становиться более сжатой. Все эти изменения можно объяснить тем, что происходит слияние магнитосферы звезды, или ее магнитного поля, с плазмой от другой. Очень интересное явление. С каждым годом такие феномены стали наблюдаться все чаще.

Звездный маяк

Представьте, что вы стоите на берегу возле маяка. Вы видите вспышку света, если луч направлен на вас, и темноту, пока луч движется по кругу, а затем снова вспышку. Аналогичным образом, если у вас есть приемник радиоизлучения, расположенный на пути радиолуча, испускаемого вращающейся нейтронной звездой, вы будете регистрировать всплеск радиоволн, когда магнитная ось звезды будет направлена в вашу сторону, затем отсутствие сигнала, потом новый всплеск и так далее.

В 1967 году ученые на радиотелескопе в Англии впервые наблюдали такие периодические сигналы. Поначалу к ним отнеслись скептически и прозвали LGM-сигналами (от англ. little green men «маленькие зеленые человечки»). Когда стало понятно, что эти радиовсплески приходят от вращающейся нейтронной звезды, эти объекты стали назвать пульсарами.

С тех пор во Млечном Пути зарегистрировали уже около 2000 пульсаров. Периоды их вращения лежат в диапазоне от примерно 10 секунд до нескольких милисекунд. Были открыты не только радио-, но и рентгеновские и гамма-пульсары. У нескольких пульсаров обнаружены планеты. Ближайший к Земле пульсар находится от нас на расстоянии 280 св. лет, в созвездии Кита.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Когда рентгеновские пульсары отбирают материал у более массивных соседей, то он контактирует с магнитным полем и создает мощные лучи, наблюдаемые в радио, рентгеновском, гамма и оптическом спектре. Так как источник располагается в компаньоне, то их именуют пульсарами с аккрецией.

Строение магнитного поля нейтронной звезды

Вращающиеся пульсары в небе подчиняются вращению звезд, потому что высокоэнергетические электроны взаимодействуют с магнитным полем пульсара над полюсами. Так как вещество внутри магнитосферы пульсара ускоряется, это заставляет его вырабатывать гамма-лучи. Отдача энергии замедляет вращение.

Магнитные поля магнетар в 1000 раз сильнее, чем у нейтронных звезд. Из-за чего заставляют вращаться звезду намного дольше.

Джоселин Белл Бернелл

«Обнаружение первого пульсара было тревожащим, жутким, потому что мы не были уверены в том, что же это было».

Каждый год, когда объявляют имена лауреатов Нобелевской премии, возникают споры по поводу исключенных. Любое научное открытие заслуга множества людей, но не все из них сделали решающий вклад и попали в число «неудачников». Обычно эти споры ведутся сдержанно, но в некоторых случаях продолжаются десятилетиями. История Джоселин Белл и история обнаружения пульсаров как раз из таких.

Белл была аспиранткой в Кембридже. В конце 1960-х годов она принимала участие в строительстве первого радиотелескопа, разработанного ее научным руководителем, Энтони Хьюишем, для обнаружения компактных радиоисточников в небе. Белл отвечала за работу телескопа и первой анализировала полученные данные. В 1967 году она начала замечать сигналы, которые называла «грязью». Невзирая на враждебность старших коллег, она показала, что эти сигналы — регулярно повторявшиеся радиоимпульсы, были настоящими, а не являлись следствием препятствовавшей измерениям деятельности человека. Поначалу эти сигналы обозначали аббревиатурой LGM (от англ. little green men «маленькие зеленые человечки»), не исключая той вероятности, что их посылает внеземная цивилизация. Однако вскоре стало понятно, что эти сигналы отголоски активности объектов, которые ныне зовутся пульсарами.

История исследования

Нейтрон был впервые открыт в 1932 году Джеймсом Чедвиком. Однако еще до этого события ученый из СССР Лев Ландау в своем материале, напечатанном зимой 1931 года, прогнозировал, что нарушение законов квантовой механики не за горами. Советский физик-теоретик уверял, что проявится подобное следующим образом: когда плотность вещества будет настолько большой, что атомные частицы окажутся в тесной связи, произойдет формирование одного огромного ядра.

В начале 1933 года два астронома, Фриц Цвикки и Вальтер Бааде, озвучили первое стойкое высказывание относительно того, что существует такой объект, как нейтронная звезда. Ученые выдвинули ряд обоснований в защиту собственной концепции образования нейтронного светила после взрыва сверхновой. Эти исследования продемонстрировали, что излучения, исходящие от нейтронных звезд, не зафиксированы из-за недостаточного уровня оптического оборудования той эпохи.

1967 год, Кембридж. Джоселин Белл обнаружила радиоимпульсы, исходящие от звезд, которые, согласно сегодняшним сведениям, причисляют к разряду сильно намагниченных и быстро вращающихся нейтронных космических тел, именуемых пульсарами, – это событие привело к открытию первой в истории нейтронной звезды.

Недалеко от остатка сверхновой Kesteven 79 обнаружен магнетар (2 фото)

Обнаруженная нейтронная звезда с чрезвычайно сильным магнитным полем – магнетар 3XMM J185246.6+003317.

Массивные звезды прекращают свое существование как сверхновые – взрывом, выпуская при этом огромное количество энергии и материи. Все что остается от звезды – это небольшой и чрезвычайно плотный остаток: нейтронная звезда или черная дыра.

Нейтронные звезды представляют собой астрономический объект, являющийся одним из конечных продуктов эволюции звезд. Подобные звезды бывают разных видов в зависимости от их возраста, силы магнитного поля или из-за наличия поблизости другой звезды. Некоторые из энергетических процессов, происходящих вокруг нейтронных звезд, могут быть изучены с помощью рентгеновских телескопов, подобных XMM-Newton.

На этом снимке изображены две сильно разнящиеся нейтронные звезды, которые наблюдались на том же самом участке неба при помощи телескопа XMM-Newton. Зеленый и розовый пузыри, доминирующие на снимке, представляют собой остаток сверхновой Kesteven 79, находящийся на расстоянии около 23 000 световых лет от нас.

Возраст Kesteven 79 астрономы оценивают в пределах от 5-7 тыс. лет, основываясь на свойства горячего газа и размер этого остатка сверхновой

Принимая во внимание время, нужное свету, чтобы достичь Земли, ученые предполагают, что сверхновая, создавшая Kesteven 79, взорвалась 30000 лет назад. Разрушение сверхновой оставило после себя нейтронную звезду со слабым магнитным полем (синее пятно в центре Kesteven 79)

Kesteven 79 и магнетар 3XMM J185246.6+003317 ESA/XMM-Newton/Ping Zhou,Nanjing University,China

Однако внимание на этом снимке должно притягивать другое синее пятно – магнетар 3XMM J185246.6+003317. Эта нейтронная звезда, расположенная ниже Kesteven 79 на этом снимке, обладает очень сильным магнитным полем

Этот объект был открыт в 2013 году при анализе изображений, полученных несколькими годами ранее. Магнетар был замечен из-за изменения структуры магнитного поля звезды, приведшего к появлению интенсивного рентгеновского излучения.

В то время как нейтронная звезда в остатке сверхновой является относительно молодой, возраст 3XMM J185246.6+003317 оценивается специалистами в миллион лет. Сильная разница в возрасте говорит о том, что образование магнетара из взрыва, вызванного Kesteven 79, крайне маловероятно. Вероятней всего, он сформировался намного раньше.

Примечания

  1. H. Quaintrell и др. The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel // Astronomy and Astrophysics. — апрель 2003. — № 401. — С. 313—323.
  2. P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels A two-solar-mass neutron star measured using Shapiro delay // Nature. — 2010. — Т. 467. — С. 1081—1083.
  3. Шаблон:News
  4. «Сверхтяжелая» нейтронная звезда отрицает теорию «свободных» кварков. РИА Новости (29 октября 2010). Проверено 30 октября 2010. Архивировано из первоисточника 16 октября 2012.
  5. Рождению странных звезд помогает темная материя? Elementy.ru, 2010
  6. Е. Шиховцев. Визит нейтронной звезды, 2013
  7. В. М. Липунов. Астрофизика нейтронных звёзд. — Наука. — 1987. — С. 90. (см. ISBN )

  8. Бескин В.С., Истомин Я.Н., Филиппов А.А. Радиопульсары — поиски истины // Успехи физических наук. — 2013. — Т. 183. — № 10. — С. 179–194.

Виды нейтронных звезд

Нейтронные космические объекты взаимодействуют с окружающей материей по двум основным критериям – скорости вращения и уровню магнитного поля. По мере развития такие тела становятся медленнее, что влечет за собой ослабление магнитного поля, поэтому их и разделяют на различные типы.

Список нейтронных объектов в порядке снижения периода вращения:

1) Эжекторы:

Высокий уровень магнитного поля и низкая степень оборотов. На особом радиусе вращения поля скорость близится к световой. Покидая пределы этого радиуса, типичное дипольное поле не способно работать, поэтому возникают обрывы, после чего заряженные частицы отправляются в межзвездное пространство. Звезда начинает «эжектировать» (вымещать) релятивистки заряженные частицы. На Земле эжекторы причисляют к радиопульсарам.

2) «Пропеллеры»:

Из-за низкой скорости оборотов не происходит эжекции частиц, ввиду чего рассматриваемый вид объекта не способен быть радиопульсаром. Вместе с тем набранной скорости хватает, чтобы материя не упала на поверхность.

3) Аккреторы:

Скорость снижена так сильно, что материя свободно падает на нейтронное тело, разогревая его полюса и повышая температуру на миллионы градусов. Нагревшись, вещество начинает излучать яркое свечение, по этой причине такие объекты называют рентгеновскими пульсарами.

4) Георотаторы:

Скорость оборотов мала, что не мешает аккреции. Однако за счет особых размеров магнитосферы магнитное поле останавливает плазму до того, как она столкнется с гравитацией. Похожее явление происходит в магнитосфере Земли.

5) Эргозвезды:

Так называют теоретически существующую разновидность нейтронных объектов, обладающих эргосферой, образование которых, предположительно, происходит в результате слияния двух вращающихся нейтронных звезд.

Иллюстрация слияния двух нейтронных звезд / ESO&University of Warwick/Mark Garlick

Общие сведения

Нейтронная звезда в разрезе.

Среди нейтронных звёзд с надёжно измеренными массами большинство попадает в интервал от 1,3 до 1,5 масс Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230 ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432 ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. C 1990-х годов некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше.

Такие магнитные поля (превышающие «критическое» значение 4,414×1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя, mec²) привносят качественно новое в физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2015 году открыто более 2500 нейтронных звёзд. Порядка 90 % из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этой ситуации видна с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003 % излучаемой энергии (соответствует 10 звёздной величине).

Что такое звезды – магнетары

Впервые магнетар – “магнитная звезда”, была обнаружена в 1998 году и буквально “поставила на уши” астрономов со всего мира. Само существование магнетаров, иначе говоря – сверхмощных нейтронных звезд, было предположено в 1992 году, однако природа этих космических объектов была столь странной, что до первой встречи с “настоящим” магнетаром, не все ученые верили в их существование.

Чем таким особенным отличаются магнетары? Тем, что своим существованием  они буквально бросают вызов наиболее известным гипотезам о происхождении черных дыр. Дело в том, что обнаружения магнетаров, считалось, что происхождение такого явления как черная дыра вполне понятно: некая звезда “умирает”, взрывается и превращается в сверхновую, а затем сжимается в сверхплотную “точку”, которая (если звезда была не слишком велика) так и остается в этой форме, или (если звезда была очень велика), “проваливается сама в себя” под действием собственной сверхмощной гравитации и создает черную дыру.

Как выглядел бы магнетар, если бы мы могли наблюдать его визуально

Но сила гравитации обнаруженных к настоящему времени магнетаров столь чудовищна, что, следуя обычной логике, на их месте должна была образоваться черная дыра, а никакая не нейтронная звезда, пусть даже и очень мощная!

Какова сила гравитации у этих странных объектов? Представьте себе – всего лишь горошина его материи весила бы более 100 миллионов тонн. Иными словами – при реальном размере этих объектов в 20-30 км (ничто по сравнению даже с нашей планетой), в этот крохотный объем “упаковано” примерно столько же материи, сколько находится в нескольких звездах размером с наше Солнце!

Затрудняет исследование магнетаров, с одной стороны, их удаленность от нашей планеты, а с другой, их сравнительно малое число – к примеру, на данный момент к магнетарам относят всего около 20 космических объектов.  Связано это скорее всего с тем, что жизненный цикл магнетара достаточно короток и сильное магнитное поле таких звезд исчезает по прошествии примерно 10 тыс. лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей Галактике за всё время её существования могло сформироваться до 30 000 000 магнетаров.

Впрочем, как минимум одно правдоподобное объяснение природе происхождения магнетаров, наука уже дала.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости Млечного Пути.

Небесная карта, отображающая гамма-пульсары, найденные телескопом GLAST

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.

Классификация нейтронных звёзд

Взаимодействие нейтронной звезды с окружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В. М. Липунова. Поскольку теория магнитосфер пульсаров всё ещё в состоянии развития, существуют альтернативные теоретические модели (см. недавний обзор и ссылки там).

Эжектор (радиопульсар)

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвёздное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

«Пропеллер»

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается настолько, что веществу теперь ничего не препятствует падать на такую нейтронную звезду. Падая, вещество, уже будучи в состоянии плазмы, движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе её полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, поэтому наблюдаются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм работает в магнитосфере Земли, из-за чего данный тип нейтронных звёзд и получил своё название.

Тифон

В древних преданиях неоднократно встречается упоминание об инфернальном событии, когда над Землей пролетел странный космический объект, называвшийся вторым Солнцем. Отталкиваясь от разных доводов, возможно предположить, что в нашей Солнечной системе присутствует небесное тело исполинских размеров, что движется вокруг центрального светила с периодичностью в 4-5 тысяч лет. Народы древности именовали его Тифоном, Огненным Змеем, Медузой Горгоной и т. д.

По всей видимости, оно относится к нейтронным звездам типа «пропеллер», чья материя сгорела в результате эволюционных процессов, а масса снизилась после эмиссии нейтронов с ее коры.

Сделанный телескопом «Чандра» рентгеновский снимок пульсара PSR J0357+3205, примечательного своим хвостом, достигающим в попречнике 4 световых лет / NASA/CXC/IUSS/DSS

Описание приближения Тифона к Земле, изложенное Аполлодором в 146 году до н. э., рисует образ мифического опоясанного кольцами дыма и задевающего макушкой звезды стоглавого чудища-дракона. Перевернувшего горы и простершего руки на запад и восток. Согласно записям древнего автора, Тифон был необъятных размеров и разбрасывал камни, окаймленные огнем.

Плиний в «Естественной истории» 77 года н. э. писал про устрашающую комету, что наблюдали люди Эфиопии и Египта. Она вращалась словно юла, пугая народ и вводя в ужас. Тифон, владыка того времени, поручил назвать огненный шар своим именем.

Приведенные упоминания – только часть из того, что говорили древние люди о космическом теле, что пугало и заставляло всматриваться в небо. Нейтронная звезда – возможно, как раз она стала причиной страха народов древности

Так или иначе, звезды и другие космические объекты всегда приковывали к себе внимание человечества, возбуждали воображение, очаровывали и заставляли думать, что в бескрайнем космосе еще масса неизвестного и нуждающегося в познании

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: