Что такое свет с точки зрения физики?

Примеры непрямого излучения

Традиционным примером источников света данного типа является спутник Земли — Луна. Это небесное тело отражается солнечные лучи, которые падают на нее. Благодаря процессу отражения мы можем видеть, как саму Луну, так и окружающие нас предметы ночью в лунном свете. По той же причине видны в телескоп планеты солнечной системы, а также наша планета — Земля (если смотреть на нее из космоса).

Еще одним примером объекта непрямого излучения, который отражает лучи от источника света, является сам человек. В общем, любой предмет является источником непрямого излучения за исключением черной дыры. Гравитационное поле черных дыр настолько сильно, что даже свет не может выбраться из него.

Параметры, связанные со скоростью света

Самые важные параметры — это длина волны и период.

Формула скорости света

c = λ/T

с — скорость света [м/с]

λ — длина волны

T — период

Задачка для практики

Определите цвет освещения, проходящий расстояние в 1000 раз больше его длины волны за 2 пикосекунды.

Решение

Для начала переведем 2 пикосекунды в секунды — это 2 * 10-12 с.

Теперь возьмем формулу скорости: v = S/t

По условию S = 1000λ, то есть v = 1000λ/t.

Выражаем длину волны:

λ = vt/1000

Подставляем значения скорости света и известного нам времени:

λ = (3 * 108 * 2 * 10-12)/1000 = 600

И соотносим со шкалой видимого света:

На шкале видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Дисперсия света

Дисперсия света – это зависимость показателя преломления среды от длины волны (частоты) падающего на вещество света.

Опыт Ньютона (1672)

Из-за дисперсии световые волны с различной длиной волны поразному преломляются веществом, что приводит к разложению белого света на цветные монохроматические лучи – спектр.

Для лучей света различной цветности показатели преломления данного вещества различны, т. к. различны скорости распространения электромагнитных волн, у которых разная длина волны. Луч красного света преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового цвета наименьшая. Это объясняется особенностями взаимодействия этих волн с электронами, входящими в состав атомов и молекул вещества среды, где они движутся.

Дисперсией света объясняется такое природное явление, как радуга.

Волна Природа света

Кристиан Гюйгенс утверждал, что опровергает корпускулярную теорию Ньютона, предлагая волновую теорию света. По его словам, свет состоит из волн, колеблющихся вверх и вниз перпендикулярно направлению распространения. Это стало известно как «Принцип Гюйгенса»В начале 19 века английский физик Томас Янг провел эксперимент, в котором свет от точечного источника после прохождения через две щели образовывал интерференционную картину на экране, расположенном на соответствующем расстоянии. Это стало известно как эксперимент Юнга с двумя щелями, который отстаивал волновую природу света, поддерживая принцип Гюйгенса.

Джеймс Клерк Максвелл заложил основу современного электромагнетизма, который описывает свет как поперечную волну, состоящую из колеблющихся магнитного и электрического полей, расположенных под углом 90 ° друг к другу. Формулировка света как поперечных волн противоречила Гюйгенсу, который считал световую волну продольной.

Альберт Эйнштейн возродил теорию частиц, введя понятие фотонов. Эксперимент Эйнштейна, известный как фотоэлектрический эффект, показал, что свет состоит из дискретных пучков или квантов световой энергии, называемых фотонами.

Явление интерференции и дифракции можно объяснить, только рассматривая свет как волну. Для сравнения, объяснение фотоэлектрического эффекта возможно только природой световых частиц.Эта огромная дилемма относительно природы света была решена с помощью фундамента квантовой механики, которая установила дуальность волны и частицы в природе как света, так и материи. 

Дифракция света

Дифракция света – это явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.

Наилучшее условие для наблюдения дифракции создается, когда размеры отверстий или препятствий – порядка длины волны. Чтобы определить распределение интенсивности световой волны, распространяющейся в среде с неоднородностями, используют принцип Гюйгенса–Френеля.

Принцип Гюйгенса–Френеля

Каждая точка фронта волны является источником вторичных волн, которые интерферируют между собой. Поверхность, касательная ко всем вторичным волнам, представляет новое положение фронта волны в следующий момент времени.

Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой, поэтому амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.

Как измеряли скорость света?

Люди пытались узнать, насколько же быстр световой луч еще с древности. Но учитывая чересчур высокие скоростные характеристики исследуемого объекта, большинство ученых приходили к выводу, что свет распространяется мгновенно. Есть 3 самых известных опыта, которые отлично демонстрируют эволюцию подхода к изучению вопроса.

Опыт Галилея

В 1607 году великий Галилео Галилей усомнился, что скорость светового луча бесконечна и предложил простую идею для опровержения. Он с помощником встал на разные холмы, расстояние между которыми было заранее посчитано. Вначале один из них должен был открыть заслонку фонаря. Как только второй исследователь увидит свет, он тоже должен был посветить в обратную сторону. 


Галилео Галилей

Дальше предстояла задача школьного уровня. Удвоенное расстояние надо было поделить на время. Но визуальных задержек движения света ученый не заметил, поэтому признал затею провальной. Проблема измерения была не только в реально слишком большой стремительности изучаемого объекта, но и в физиологических ограничениях скорости реакции самих исследователей.

Опыт Рёмера и Брэдли

Почти 70 лет спустя проблему бесконечной скорости света частично решил датский астроном Олаф Рёмер. Он следил за Юпитером. Оказалось, что когда Земля улетает от планеты дальше, то затмения спутника Ио начинают запаздывать на 22 минуты. Это отклонение от расчетных значений астроном приписал скорости света в космосе, приблизительно получив значение 212000 км/с. Такая большая погрешность возникла потому, что ученый не смог учесть элипсовый изгиб траекторий движения планет.


Олаф Рёмер

В 1676 году Олаф Рёмер сообщил о своем открытии в Парижской академии, но не стал писать полноценного научного труда. Поэтому официально идею признали после открытия Джеймсом Брэдли аберрации – изменения направления излучения в зависимости от выбранной системы отсчета. Проще говоря, англичанин математически доказал, что небесные тела движутся не по кругу, а по элипсовидной траектории, вычислил ее и уточнил скорость света до 308000 км/с.

Однако нетрудно догадаться, что погрешности астрономических вычислений не позволяют максимально точно вычислить, насколько же быстр свет. Для этого надо было иметь более контролируемые лабораторные условия на Земле.

Опыт Физо

В 1849 году новую задачу смог решить французский ученый Арман Ипполит Луи Физо, усовершенствовав идею Галилео и исключив из нее человеческий фактор. В его опыте световой луч проходил через зубчатое колесо, постоянно прерываясь. Эти прерывания фиксировались на расстоянии 8,63 км. По его вычислениям получилось значение 313300 км/с.


Арман Ипполит Луи Физо

Но основная суть этого опыта в том, что впервые ученые получили возможность полностью контролировать все этапы эксперимента. Осталось только подождать чуть более 100 лет, чтобы наука получила более точные методы измерения. Что и случилось в 1975 году, когда с помощью лазеров исследователи смогли достигнуть пределов точности в рамках метрической системы.

Фундаментальная роль в физике

Прежде чем углубляться в научные теории, надо разобраться в самом «простом» вопросе: что такое свет? Проблема заключается в том, что в зависимости от условий эксперимента луч ведет себя то как поток частиц, которые называются «фотоны», то как волна.

Поэтому с 17 века в научном мире велись споры:

  1. Часть исследователей верила, что свет – это часть эфира, всепроникающей сущности, которая колеблется, вызывая привычные нам электромагнитные явления. Эту идею постулировал Рене Декарт. 
  2. Некоторые ученые считали, что свет – это только набор летящих частиц. Их корпускулярную теорию сформулировал Исаак Ньютон.
  3. Другие доказывали, что свет – волна. Их волновую теорию доказал нидерландский физик Христиан Гюйгенс.


Исаак Ньютон

К концу 19 века именно эфирная теория света считалась наиболее достоверной. Но все изменил опыт Майкельсона-Морли в 1887 году. Американские ученые решили замерить скорость света вдоль потока эфира и поперек. Так они хотели узнать, насколько стремительны эфирные потоки. Но исследователи были поражены, когда оказалось, что свет двигался во всех направлениях одинаково. Это означало, что никакой эфир его не передвигает.

В 1901 году на основе идеи Альберта Эйнштейна, немец Макс Планк пришел к выводу, что свет излучается и поглощается строго порционно, по квантам, в зависимости от длины волны. Эти порции были названы фотонами, объяснившими корпускулярную теорию.

Объединив эти данные Альберт Эйнштейн создал свою теорию относительности. Он заявил, что скорость света в вакууме не зависит ни от источника, ни от положения наблюдателя. То есть, она постоянная. Этот простой тезис буквально перевернул все понимание физики элементарных частиц. Если делать логические выводы на тезисах Эйнштейна, получается, что:

  1. Скорость света одинакова для всех безмассовых частиц и волн. То есть любое излучение в вакууме будет перемещаться с одинаковой стремительностью. 
  2. Е=mc2. Это легендарное уравнение означает, что у любого вида энергии есть определенная масса. При этом последняя равна в покое объему энергии, которая заключена в объекте, умноженной на постоянную скорость света в квадрате.
  3. Сокращение длины. Это теория Хендрика Лоренца, согласно которой, чем быстрее движется объект, тем короче он становится. При этом сам Эйнштейн верил, что подобное явление сродни оптической иллюзии. В то же время другие ученые считают, что такое сокращение объективно.
  4. Пространство-время. В специальной теории относительности время является не отдельной величиной, а еще одним измерением, подобно длине, ширине и высоте. Этот постулат доказывается тем, что на больших скоростях время для движущегося объекта замедляется. 


Альберт Эйнштейн

Скорость света в вакууме используется как константа в изучении большинства явлений современными физиками, даже если они не имеют прямого отношения к свету, как гравитация. Впоследствии эти знания используются в передовых разработках. Для примера, на спутниках GPS и Международной космической станции часы настраиваются с поправкой на 0,01 с в год из-за искривления времени на орбите.

Верхний предел скорости

Согласно специальной теории относительности максимальная скорость света распространяется только на частицы, у которых нет массы. То есть любой предмет или живое существо не сможет ее достигнуть. Логика этого заявления вытекает из исследований Эйнштейна и Лоренца.

Чем больше становится скорость объекта, тем сильнее увеличивается его энергия. В формулу Е=мс2 добавляется гамма-фактор Лоренца, учитывающий уменьшение длины и замедление времени. При приближении к скорости света этот коэффициент стремится к бесконечности. То есть для достижения предела стремительности объекту, как минимум, потребуется бесконечная энергия. При этом сам он будет становиться все меньше, пока не превратится в точку с бесконечной массой, для которой время полностью остановится. А значит и движение. 


Физические формулы

В 1910 году Альберт Эйнштейн и Арнольд Зоммерфельд придумали мысленный эксперимент. Они допустили, что существуют электромагнитные частицы тахионы, которые могут двигаться быстрее скорости света. В таком случае они направятся назад во времени и смогут перенести информацию в прошлое. Но современная физика считает подобное невозможным, ведь тогда нарушится причинно-следственная связь.

С другой стороны тахионы и перемещения во времени стали благодатной почвой для фантастов. Один из наиболее знаменитых персонажей, связанных с этой темой – Флэш из вселенной комиксов DC. Его способности перемещаться во времени авторы связывают с использованием тахионов и преодолением верхнего предела скорости.

Физическая природа и свойства света[править]

Благодаря дисперсии белый свет можно разложить в спектр с помощью призмы

Как и любые другие электромагнитные волны, свет характеризуется частотой, длиной волны, поляризацией и интенсивностью. В вакууме свет распространяется с постоянной скоростью, не зависящей от системы отсчета — скоростью света. Скорость распространения света в веществе зависит от свойств вещества и в целом меньше скорости света в вакууме. Длина волны связана с частотой законом дисперсии, который также определяет скорость распространения света в среде.

Взаимодействуя с веществом, свет рассеивается и поглощается. При переходе из одной среды в другую изменяется скорость распространения света, что приводит к преломлению. Наряду с преломлением на границе двух сред свет частично отражается. Преломление и отражение света используется в различных оптических приборах: призмах, линзах, зеркалах, позволяющих формировать изображение.

Излучение и поглощение света происходит квантами: фотонами, энергия которых зависит от частоты:

E=hν{\displaystyle E=h\nu },

где E — энергия кванта, ν{\displaystyle \nu } — частота, h — постоянная Планка.

Обычный дневной свет состоит из некогерентных электромагнитных волн с широким набором частот. Такой свет принято называть белым. Белый свет имеет спектр, который соответствует спектру излучения Солнца. Свет с другим спектром воспринимается как цветной. Дисперсия света позволяет разложить свет на цветные составляющие.

Как и любая другая электромагнитная волна, свет характеризуется поляризацией. Дневной свет обычно неполяризованный или частично поляризованный. Степень поляризации света меняется при каждом акте отражения от любой поверхности или прохождения через любую среду.

Свет переносит энергию. В частности, солнечный свет является одним из основных источников энергии на Земле. Часть этой энергии воспринимается живыми организмами при фотосинтезе. Использование солнечной энергии человечеством — одна из важнейших современных проблем.

Термическое излучение

Процесс термического излучения представляет собой физический процесс, при котором электронная подсистема возбуждается за счет передачи ей кинетической энергии от ядер атомов. Если какой-либо объект, например металлическую пластину, подвергнуть нагреву до высоких температур, то он начнет светиться. Сначала видимый свет будет иметь красный цвет, поскольку эта часть видимого спектра является наименее энергетической. При увеличении температуры металла он станет излучать бело-желтый свет.

Отметим, что при нагреве металла он сначала начинает испускать инфракрасные лучи, которые человек не способен видеть, но ощущает их в виде тепла.

Давление света

Свет оказывает физическое давление на объекты на своем пути — явление, которое не может быть выведено из уравнений Максвелла, но может быть легко объяснено в корпускулярной теории, когда фотоны соударяются с преградой и передают свой импульс. Давление света равно мощности светового пучка, поделённой на с, скорость света. Из-за величины с, эффект светового давления является незначительным для повседневных объектов. Например, одномилливатная лазерная указка создаёт давление около 3,3 пН. Объект, освещенный таким образом, можно было бы поднять, правда для монеты в 1 пенни на это потребуется около 30 млрд 1-мВт лазерных указок. Тем не менее, в нанометровом масштабе эффект светового давления является более значимым, и использование светового давления для управления механизмами и переключения нанометровых коммутаторов в интегральных схемах является активной областью исследований.

При больших масштабах световое давление может заставить астероиды вращаться быстрее, действуя на их неправильные формы, как на лопасти ветряной мельницы. Возможность сделать солнечные паруса, которые бы ускорили движение космических кораблей в пространстве, также исследуется.

Скорость света: чему она равна и как ее измерять

Скорость света — это величина, характеризующая быстроту перемещения света.

До второй половины XVII века скорость света считалась бесконечной, пока ее не измерил датский астроном Олаф Рёмер. Он наблюдал затмения спутника Юпитера Ио и заметил, что они не совпадают по времени с расчетными, а зависит это несовпадение от расстояния между событием и наблюдателем

Принимая во внимание положение Земли на своей орбите относительно Юпитера, Рёмер подсчитал, что скорость света равна 220 000 км/с

В начале XIX века французский ученый Физо разработал для измерения скорости света так называемый метод прерываний. Физик направил луч света на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8,6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов Физо получил результат — 313 000 км/с.

Изобретение лазера в XX веке позволило дойти до предела точности и зафиксировать скорость света на отметке 299 792 458 м/с с погрешностью 1,2 м/c. Дальнейшее уточнение стало невозможным из-за отсутствия точного определения метра. В то время за эталон брали металлическую палку, хранящуюся в палате мер и весов.

В восьмидесятых годах прошлого века Генеральная конференция по мерам и весам (да, такая действительно существует) приняла за метр расстояние, которое преодолевает свет за 1/299 792 458 секунды. Соответственно, скорость света стала официально равной 299 792 458 метров в секунду. Для удобства ее значение принято округлять до 300 000 км/с.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Неудавшийся опыт Галилея

Чтобы измерить скорость света, в 1600 году Галилей и его помощник взобрались на соседние холмы, предварительно рассчитав расстояние между ними. Они взяли зажженные фонари и оборудовали их заслонками, которые открывают и закрывают огни. Поочередно открывая и закрывая огонь, они пытались рассчитать скорость света. Галилей и помощник заранее знали, с какой задержкой будут открывать и закрывать огонь. Когда один из них открывал заслонку, то же должен был сделать и другой.

Однако эксперимент был провальным, и неудивительно: чтобы все получилось, ученым пришлось бы стоять на расстоянии в миллионы километров друг от друга.

Полезные подарки для родителей
В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!
Получить подарок!

Более современные представления

Современный взгляд гораздо более интересен. Да, никто не отрицает, что принципы корпускулярно-волнового дуализма будут работать и свет будет иметь и природу потока частиц или излучения, и природу волны. Но стоит тут задуматься о строении самой световой частицы.

Думаю, для вас на станет открытием, что частицы, из которых состоит свет — это фотоны. Вот тут нужно остановиться. Фотоны…Частицы…Именно природа самих фотонов делает световое излучение таким, какое оно есть. Её понимание прояснит феномен существования группы мячиков в потоке, которые подчиняются ещё и волновым закономерностям.

Вокруг фотонов ходит множество споров. Началось с того, что появились в лексиконе ученых этакие виртуальные фотоны, то есть частицы лишенные массы и служащие для передачи взаимодействий разного рода. Но что значит лишенные массы. Рассуждения привели к тому, что в общем-то, абсолютно люба частица в итоге может быть описана как виртуальная. И хотя «обычный» фотон и обладает свойствами частицы, но он тоже представляет из себя просто сгусток энергии и является виртуальным (лишенным массы, а потому способным двигаться со скоростью света). Подобным образом сейчас описывается и электрон. Просто возмущение волновой функции. Не будем сейчас влезать в дебри и разбираться, почему у электрона-то масса есть :)…

Что такое скорость света

Физическое определение термина достаточно простое. Под «скоростью» ученые понимают быстроту перемещения света. То есть, как быстро могут преодолевать различные расстояния. 


Перемещение световых частиц

Однако вокруг нас пространство не пустое. На Земле есть жидкости и газы. Мы их можем не видеть, но эти вещества состоят из молекул, которые становятся препятствиями для частиц света – фотонов. Поэтому их скорость может различаться в разных средах и достигает максимума только в пустоте вакуума. 

В вакууме

Современными учеными эта величина принята за максимальную и постоянную. Именно от нее производятся расчеты для определения других констант. Наиболее точно измерить, какая скорость света в вакууме получилось только в 1975 году. В космической пустоте он перемещается со скоростью: 299792458 м/с. Погрешность вычислений составляет около 1,2 м/с. Но для простоты значение округляется до 300000 км/с.

В прозрачной среде

Через воздух, стекло, воду и другие прозрачные субстанции свет движется медленнее, чем через вакуум. И для каждого вещества есть своя степень «замедления», которая называется абсолютным показателем преломления света и записывается в формулах, как «n». Фактически он означает во сколько раз фотоны медленнее перемещаются через вещество.

Так для воздуха n=1,003, а для воды n=1,33. То есть в водной среде фотоны будут на 33% медлительнее и станут двигаться со скоростью «всего лишь» 225341 км/с.


Движение света в воде

Как отличается скорость света на Земле и в космосе

Объединяя эти данные, получается, что за пределами нашей, да и любой другой планеты в вакууме скорость распространения света считается максимальной и постоянной. Это верхний предел, быстрее которого ни один объект, с некоторыми оговорками, двигаться не может. На Земле же свет постоянно замедляется из-за различных веществ, через которые фотонам приходится «продираться». Поэтому скорость приходится каждый раз вычислять с поправкой для конкретной среды.


Земля и звезды

Общие понятия

Свет — это результат физического процесса, происходящего в атомах вещества. Атомы, получая энергию извне (нагрев, облучение), часть ее передают электронам. Электроны сначала возбуждаются, а затем начинают терять энергию, переходя на нижние энергетические уровни. Каждый переход происходит с излучением фотонов — частиц света, которые воспринимает наш глаз. Фотоны могут проявлять себя либо как волна, либо как частица.

Одной из главных характеристик электромагнитного излучения является длина волны. К видимому свету относятся излучения с длиной волны от 8*10-7 до 4*10-7 м, то есть от красного до фиолетового света.

Свет распространяется в вакууме со скоростью 300 000 км/с или 3*108 см/с. Это самая большая скорость в природе для любых частиц и взаимодействий.

Первые источники видимого света, которые человек изобрел для собственных нужд, использовали разные виды горючего топлива: дерево, жир, сало. В конце XIII швейцарец Аргант изобрел лампу с фитилем, в которую в качестве топлива заливался керосин. Американец Томас Эдисон изобрел лампочку накаливания в конце XIX века. И если лампа с фитилем давно превратилась в настоящий антиквариат, то лампочка накаливания до сих пор верой и правдой служит человеку.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

Источники звуковых волн. Схема натянутая струна

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

Звуковые волны. Опыт со звонком

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: