Основные сведения о трансформаторах как физическом явлении

Типы и виды силовых трансформаторов

Какие бывают силовые трансформаторы? Силовые трансформаторы можно разделить по различным основаниям.

По количеству фаз выделяют однофазные и трехфазные трансформаторы. Трехфазные используют на подстанциях, они более распространены.

По числу обмоток – двухобмоточные и трехобмоточные трансформаторы.

По задаче или назначению трансформаторы бывают повышающие или понижающие напряжение.

По месту установки – устанавливаемые внутри помещений и устанавливаемые снаружи помещений (рис. 3).


Рис. 3. Трансформатор, установленный на Курской АЭС

По преобразуемому параметру электрического напряжения выделяют силовой трансформатор тока и силовой трансформатор напряжения.

Силовые трансформаторы тока преобразуют силу тока без изменения его мощности.

Силовые трансформаторы напряжения помогают получить нужное напряжение от источника переменного тока, например, промышленной сети.

По виду диэлектрика выделяют сухие силовые трансформаторы (с литой или воздушно-барьерной изоляцией) и силовые маслонаполненные трансформаторы.

Сухие силовые трансформаторы с литой изоляцией (рис. 4) имеют ряд преимуществ:

  • компактный размер;
  • широкий диапазон допустимых температур (до –60 °С);
  • повышенная пожарная и экологическая безопасность;
  • пониженный уровень шума;
  • простота монтажа;
  • устойчивость обмоток к увлажнению и загрязнению.


Рис. 4. Основные элементы конструкции сухих трансформаторов

Трансформатор силовой масляный имеет широкий спектр применения в промышленности. По конструкции он представляет собой корпус (бак) с погруженными в него сердечником и обмотками и заполненный трансформаторным маслом.

Масляные трансформаторы производства «Группы СВЭЛ» характеризуются:

  • низким уровнем шума;
  • отсутствием необходимости подпрессовки обмоток и капремонта в процессе всего срока эксплуатации;
  • незначительными добавочными потерями в металлоконструкциях.

«Группа СВЭЛ» имеет площадки по производству сухих и масляных трансформаторов в Екатеринбурге. Все трансформаторы производятся с полным контролем на каждом этапе изготовления, сборки и проверки и соответствуют необходимым стандартам качества.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).


Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.


Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Тороидальные трансформаторы

   Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото: 

Фотография – тороидальный трансформатор

   Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

   Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов – рисунок

   Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения. Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим

Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряжения

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно

Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

Полезные советы
Схемы для подключения
Принципы работы устройств
Главные понятия
Счетчики от Энергомера
Меры предосторожности
Лампы накаливания
Видеоинструкции для мастера
Проверка мультиметром

Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Если на первичную обмотку подать переменное напряжение , то по виткам обмотки потечет переменный ток , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – и . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения , которое будет приблизительно равно наведенной ЭДС (рис. 3).

 
Рис. 3 — Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток , образующий в магнитопроводе переменный магнитный поток изменяющийся с той же частотой, что и ток . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток , стремящийся размагнитить порождающий его магнитный поток (рис. 4).

 
Рис. 4 — Работа трансформатора с нагрузкой

В результате размагничивающего действия потока в магнитопроводе устанавливается магнитный поток равный разности потоков и и являющийся частью потока , т.е.

Результирующий магнитный поток обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу , под воздействием которой во вторичной цепи течет ток . Именно благодаря наличию магнитного потока и существует ток , который будет тем больше, чем больше . Но и в то же время чем больше ток , тем больше противодействующий поток и, следовательно, меньше .

Из сказанного следует, что при определенных значениях магнитного потока и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС , тока и потока , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков и не может быть равна нулю, так как в этом случае отсутствовал бы основной поток , а без него не мог бы существовать поток и ток . Следовательно, магнитный поток , создаваемый первичным током , всегда больше магнитного потока , создаваемого вторичным током .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение, которое выдает нам трансформатор на вторичной обмотке, зависит от количества витков, которые намотаны на первичной и вторичной обмотке!

где  — напряжение на вторичной обмотке — напряжение на первичной обмотке — количество витков первичной обмотки — количество витков  вторичной обмотки — сила тока первичной обмотки —  сила тока вторичной обмотки

Из этой формулы можно сделать вывод: увеличиваем напряжение – уменьшается ток, уменьшаем
напряжение – увеличивается ток.

Отношение напряжений между первичной и вторичной обмотками называют коэффициент трансформации.

В трансформаторе соблюдается закон сохранения энергии, то есть  какая мощность в трансформатор заходит, такая и выходит.

Для переменного тока мощность определяется также, но только вместо постоянного напряжения берется среднеквадратичное напряжение.

Мощность трансформатора зависит от размеров сердечника, рабочей частоты преобразования.

Трансформаторы, которые выдают одинаковые напряжения на выходе и на входе, называют разделительными (развязывающими) (рис. 5).

 
Рис. 5 — Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим (рис. 6). У повышающего трансформатора вторичная обмотка наматывается
более тонким проводом, чем первичная, так как максимальный ток вторичной обмотки будет меньше тока первичной обмотки.

 
Рис. 6 — Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим (рис. 7). Первичная обмотка понижающего трансформатора всегда будет намотана более тонким проводом, чем вторичная. Связано это с тем, что при понижении напряжения возможно увеличение тока во вторичной обмотке, следовательно, нужен провод большего сечения.

 
Рис. 7 — Схематичное изображение понижающего трансформатора

Трансформаторы напряжения

Трансформаторы напряжения предназначены для трансформации и снижения напряжения в более низкое. Обычно необходимо это для измерения напряжения электроэнергии, идущей из сети. Трансформаторы напряжения помогают изолировать цепи измерения и защиты от самой электросети с электроэнергией высокого напряжения.

Трансформаторы напряжения бывают заземляемыми и незаземляемыми. Заземляемый трансформатор может быть однофазным и трехфазным. Однофазный имеет один заземленный конец первичной обмотки, а в трехфазном заземлена нейтраль обмотки первого уровня.

В незаземляемом трансформаторе напряжения вся первичная обмотка изолирована и земли.

Кроме того, различают трансформаторы напряжения каскадные и емкостные. В каскадных первичную обмотку разделяют на несколько секций, последовательно соединенных друг с другом. В этом случае мощность к обмотке вторичной передается с помощью дополнительных, играющих соединительную роль, обмоток. В емкостном трансформаторе напряжения есть емкостный делитель.

Также трансформаторы напряжения различаются по количеству обмоток. В двухобмоточных есть лишь одна вторичная обмотка, в трехобмоточных помимо основной вторичной обмотки присутствует и вторая. В зависимости от того, где необходимы трансформаторы напряжения, выбирают тот или иной тип устройств.

Определение и назначение

Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.

Виды специализированных трансформаторов

Это трансформаторные устройства, предназначенные для решения узконаправленных задач электросистемы.

  • Автотрансформатор. Устройство, обмотки которого связаны между собой как по электрическому, так и по магнитному принципу. Единственная обмотка имеет несколько выводящих линий для получения токов с разными показателями напряжения. По сути это компактный трансформатор понижающего вида, который обладает меньшей стоимостью за счет экономии на обмотке. Агрегаты внедряют в устройства автоматического управления, в высоковольтные электросети, соединяя обмотки по схеме звезды или треугольника. Одна из разновидностей модели – лабораторный автотрансформатор, позволяющий плавно регулировать напряжение, поставляемое потребителю. Применяется в пусконаладочных системах для точной настройки электрооборудования.
  • Сварочный. Предназначен для подключения к сварочным аппаратам и преобразования токов высокого напряжения в низкие. Такие трансформаторы востребованы в строительной промышленности для монтажа металлических конструкций – арматуры, труб, узлов. Первичная обмотка сварочного трансформатора принимает входящие токи, намагничивая магнитопровод, а вторичная обмотка индуцирует переменный ток до необходимых значений.
  • Импульсный. Предназначен для трансформации тока и напряжения импульсных сигналов с минимальными искажениями показателей на выходе. Этот вид трансформаторов особенно востребован в радиоэлектронике, триодных генераторах, дифференцирующих модулях. В электросетях импульсные устройства играют роль защитных элементов при коротких замыканиях вследствие избыточного нагрева или чрезмерной нагрузки. По конструкции различают бронестержневые, броневые, тороидальные, стержневые импульсные трансформаторы.
  • Разделительный. Состоит из двух обмоток одинаковой конструкции, не связанных между собой и создающих одинаковое напряжение на входе и на выходе. Используется в целях повышения надежности электросетей, обеспечения электрической безопасности и гальванической развязки электроцепи.
  • Согласующий. Согласовывает показатели сопротивления токов в разных звеньях электросхем с минимальными изменениями первоначальных показателей. Трансформаторы такого типа применяются также для блокирования гальванического взаимодействия в разных участках электросистемы.
  • Высокочастотный. Способен передавать высокоточные сигналы за счет особого материала обмотки – с использованием ферритов, модифицированного кремнием или никелем железа. Подобные сплавы обладают низкой диэлектрической проницаемостью, линейностью характеристик передачи электроэнергии и способностью к локализации возникающих помех. Высокочастотные трансформаторы входят в конструкции распределительных устройств, установок возобновляемой энергетики, промышленных приводов и пр.
  • Пик-трансформатор. Преобразует энергетические потоки синусоидальной формы, подаваемые на первичную обмотку, в разнополярные импульсы заданной частоты на выходе вторичной обмотки. Кратковременные импульсы напряжения с пиками и спадами лежат в основе работы полупроводниковых и газоразрядных приборов.

Классификация по видам

Силовые

Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

Автотрансформаторы

Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

Трансформаторы тока

Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

Трансформаторы напряжения

Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

Импульсные

Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды

Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

Разделительные

Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

Существует два типа таких устройств:

  • силовые;
  • сигнальные.

Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

Согласующие

Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

Пик-трансформаторы

Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

Сдвоенный дроссель

Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

   Измерительные трансформаторы тока 110 кВ

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

   Измерительный трансформатор напряжения 110 кВ

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Применение трансформатора

Трансформеры имеют множество применений в современном мире. Некоторые из них —

i) Распределение энергии:

На электростанциях вырабатывается большое количество напряжения. Но мы не можем использовать это напряжение напрямую в домашних условиях. В это время в действие вступает трансформатор. Трансформаторы понизили напряжение до требуемого. Этот тип трансформатора известен как силовые трансформаторы. Есть также трансформаторы, повышающие напряжение. Благодаря этому типу трансформатора можно подавать электричество в дома.

Трансформаторы в распределительной сети, Источник изображения — High Contrast, Пилон-трансформер в Сирии, CC BY 3.0 DE

ii) Электронные устройства:

Многие электронные устройства и бытовая техника используют трансформатор для повышения или понижения напряжений в соответствии с требованиями.

Трансформаторы для электроники, Источник изображения — Электрик на пенсии, Трансформаторы SMPS (Корея, около 2000 г.) — вид снизу, CC0 1.0

iii) Аудио трансформаторы:

  • Этот тип трансформаторов позволяет телефонным цепям обеспечивать двусторонний разговор по одной паре проводов. Они также являются связями между аудиосистемами. Его можно использовать для согласования импеданса, например, громкоговоритель с низким сопротивлением может быть согласован с усилителями с высоким сопротивлением.
  • Трехфазные трансформаторы имеют широкое применение в промышленных целях, где однофазные трансформаторы не могут служить своим целям.
  • Измерительные трансформаторы может изолировать два устройства или системы, используя свои свойства.
  • Радиочастотные трансформаторы или РЧ трансформаторы используются в радиолокационных устройствах и применяются в радиочастотной области.
  • Импульсные трансформаторы используются для передачи электрических импульсов в электронных схемах, цифровых схемах, а также в системах распределения энергии и управления.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: