Электроизоляционные материалы: ткани и листы

Наука о материалах

Материалом называется субстанция, характеризующаяся отличным от других объектов химическим составом, свойствами и структурой молекул и атомов. Вещество находится в одном из четырех состояний: газообразном, твердом, плазменном или жидком. Электротехнические и конструкционные материалы выполняют в установке разнообразные функции.

Проводниковые материалы осуществляют передачу потока электронов, диэлектрические компоненты обеспечивают изоляцию. Применение резистивных элементов преобразовывает электрическую энергию в тепловую, конструкционные материалы сохраняют форму изделия, например, корпуса. Электротехнические и конструкционные материалы обязательно выполняют не одну, а несколько сопутствующих функций, например, диэлектрик в работе электроустановки испытывает нагрузки, что приближает его к конструкционным материалам.

Электротехническое материаловедение – это наука, занимающаяся определением свойств, изучением поведения вещества при воздействии электричества, тепла, мороза, магнитного поля и др. Наука изучает специфические характеристики, необходимые для создания электрических машин, приборов и установок.

Жидкие диэлектрики

Жидкие
электроизоляционные материалы часто применяются в электрических машинах
и аппаратах. В трансформаторе роль изоляции играет масло. К жидким
диэлектрикам также относят сжиженные газы, ненасыщенные вазелиновые и парафиновые масла, полиорганосилоксаны, дистиллированная вода (очищенная от солей и примесей).

Основными
характеристиками жидких диэлектриков являются диэлектрическая
проницаемость, электрическая прочность и электропроводность. Также
электрические параметры диэлектриков во многом зависят от степени их
очистки. Твердые примеси могут увеличивать электропроводность жидкостей
за счет разрастания свободных ионов и электронов. Очистка жидкостей
путем дистилляции, ионным обменом и т.д. приводит к возрастанию величины
электрической прочности материала, тем самым снижая его
электропроводность.

Жидкие диэлектрики разделяют на три группы:

  • нефтяные масла;
  • растительные масла;
  • синтетические жидкости.

Наиболее
часто используются нефтяные масла, такие как трансформаторное,
кабельное и конденсаторное. Синтетические жидкости (кремнийорганические и
фторорганические соединения) также используются в аппаратостроении.
Например, кремнийорганические соединения морозоустойчивы и
гигроскопичны, поэтому применяются в качестве изолятора в небольших
трансформаторах, но их стоимость выше цены нефтяных масел.

Растительные
масла практически не используются в качестве изоляционных материалов в
электроизоляционной технике. К ним относятся касторовое, льняное,
конопляное и тунговое масло. Эти материалы представляют собой
слабополярные диэлектрики и используются в основном для пропитки
бумажных конденсаторов и в качестве пленкообразующего вещества в
электроизоляционных лаках, красках, эмалях.

Классификации изоляторов

Электроизоляторы различаются по своему происхождению и агрегатному состоянию. Что касается происхождения, то в качестве признаков выделяют принадлежность к органическим и неорганическим материалам, а также к натуральному и синтетическому сырью. К природным материалам можно отнести слюду, которая характеризуется прочностью, гибкостью и способностью к расщеплению. Это неорганический диэлектрик естественного происхождения. И напротив, в группе синтетических органических материалов можно отметить химические высокомолекулярные соединения. В готовом к использованию виде они предлагаются как пластмассы и эластомеры. Основные эксплуатационные различия определяет классификация электроизоляционных материалов по агрегатному состоянию. Выделяются твердые и жидкостные, а также газообразные диэлектрики.

Полупроводниковые материалы

Это элементы, которые имеют значение удельной проводимости, находящееся в промежутке этого показателя для проводников и диэлектриков. Проводимость этих материалов напрямую зависит от проявления примесей в массе, внешних направлений воздействия и внутренних дефектов.

Характеристика электротехнических материалов группы полупроводников говорит о существенном отличии элементов друг от друга по структурной решетке, составу, свойствам. В зависимости от указанных параметров, материалы подразделяют на 4 вида:

  1. Элементы, содержащие в себе атомы одного вида: кремний, фосфор, бор, селен, индий, германий, галлий и др.
  2. Материалы, содержащие в составе металлические окислы – медь, окись кадмия, цинка и др.
  3. Материалы, объединенные в группу антимонид.
  4. Материалы органики – нафталин, антрацен и др.

В зависимости от кристаллической решетки, полупроводники подразделяют на поликристаллические материалы и монокристаллические элементы. Характеристика электротехнических материалов позволяет разделять их на немагнитные и слабомагнитные. Среди магнетических компонентов различают полупроводники, проводники и непроводящие элементы. Четкое распределение выполнить затруднительно, так как многие материалы по-разному ведут себя в изменяющихся условиях. Например, работу некоторых полупроводников при пониженных температурах можно сравнить с действием изоляторов. Те же диэлектрики при нагревании работают, как полупроводники.

Твердые диэлектрики

Твердые
электроизоляционные материалы – наиболее широкий класс диэлектриков,
которые применяются в разных областях. Они имеют различные химические
свойства, а величина диэлектрической проницаемости колеблется от 1 до
50000.

Твердые
диэлектрики делятся на неполярные, полярные и сегнетоэлектрики. Их
главные отличия состоят в механизмах поляризации. Этот класс изоляции
обладает такими свойствами, как химическая стойкость, трекингостойкость,
дендритостойкость. Химическая стойкость выражается в способности
противостоять влиянию различным агрессивным средам (кислота, щелочь и
т.д.). Трегингостойкость определяет возможность противостоять
воздействию электрической дуги, а дендритостойкость – образованию дендритов.

Твердые
диэлектрики применяются в различных сферах энергетики. Например,
керамические электроизоляционные материалы наиболее часто используются в
качестве линейных и проходных изоляторов на подстанциях. В качестве
изоляции электрических приборов используют бумагу, полимеры,
стеклотекстолит. Для машин и аппаратов чаще всего применяют лаки,
картон, компаунд.

Для
применения в различных условиях эксплуатации изоляции придают некоторые
особые свойства путем сочетания разных материалов: нагревостойкость,
влагостойкость, радиационная стойкость и морозостойкость. Нагревостойкие
изоляторы способны выдерживать температуры до 700 °С, к ним относятся
стекла и материалы на их основе, органосилиты и некоторые полимеры.
Влагостойким и тропикостойким материалом является фторопласт, который
негигроскопичен и гидрофобен.

Изоляция, стойкая к радиации
используется в приборах с атомными элементами. К ней относятся
неорганические пленки, некоторые виды полимеров, стеклотекстолит и
материалы на основе слюды. Морозостойкими считаются изоляции, которые не
теряют своих свойств при температуре до -90 °С. Особые требования
предъявляются к изоляции, предназначенной для приборов, работающих в
космосе или условиях вакуума. Для этих целей применяются
вакуумно-плотные материалы, к которым относится специальная керамика.

Летероид

Тонкая фибра выпускается в листах и скатывается в рулон для транспортировки. Применяется как материал для изготовления прокладок изоляции, фасонных диэлектриков, шайб. Бумагу с асбестовой пропиткой и асбестовый картон делают из хризолитового асбеста, расщепляя его на волокна. Асбест обладает сопротивлением к щелочной среде, но разрушается в кислотной.

В заключение следует отметить, что с применением современных материалов для изоляции электрических приборов значительно увеличился срок их службы. Для корпусов установок применяют материалы с выбранными характеристиками, что дает возможности для выпуска новой функциональной техники с улучшенными показателями.

Жидкие диэлектрики

Электроизоляционные Материалы их Свойства и Область Применения

Наиболее широкое распространение в электротехнических устройствах получили нефтяные (минеральные) электроизоляционные масла и синтетические жидкости.

Они выполняют функцию изолирующей, охлаждающей и дугогасящей среды и применяются как в чистом виде, так и в сочетании с волокнистыми и твёрдыми материалами, например, бумажно-масляная или маслобарьерная изоляция.

Поэтому при выборе изолирующей жидкости необходимо соблюдать следующие требования:

  • совместимость с применяемыми материалами;
  • высокая электрическая прочность;
  • высокое удельное сопротивление;
  • малые диэлектрические потери;
  • стабильность свойств в условиях длительной эксплуатации;
  • пожарная и экологическая безопасность.

Не все жидкие диэлектрики удовлетворяют этим требованиям, поэтому в каждом конкретном случае предпочтение отдаётся тем свойствам, которые обеспечивают необходимую стабильность параметров, надёжность и долговечность изделия.

К этой группе относятся трансформаторное, конденсаторное и кабельное масла.

Конденсаторное масло получают из трансформаторного путём дополнительной обработки под вакуумом с целью удаления воздуха (газов). К параметрам конденсаторного масла предъявляются повышенные требования, так как в процессе эксплуатации невозможно производить замену или регенерацию масла, и диэлектрические свойства его должны сохраняться в течение всего срока службы.

В конденсаторном масле не допускается содержание газов, так как в газовых включениях при высокой напряжённости электрического поля интенсивно развиваются ионизационные процессы, что может привести к пробою изоляции.

К кабельным маслам, как и к конденса­торному маслу, предъявляются высокие требования касатель­но стабильности и численного значения параметров, так как изоляция должна обеспечить длительный срок службы.

Однако есть и специфические требования, зависящие от конструкции изоляции и величины напряжения.

Так, для кабелей с бумажно-масляной изоляцией (БМИ) напряжением до 35 кВ масло должно обладать повышенной вязкостью, что исключает его стекание при прокладке кабе­ля на различных уровнях и образование «обедненных» участ­ков изоляции, где возможны развитие разрядных процессов и пробой изоляции. Для увеличения вязкости в масло добавля­ют канифоль или другие загустители.

Все масла в процессе эксплуатации находятся под воздействием внешних факторов. Это вызывает старение масла.

— при доступе воздуха, так как старение масла в значительной степени связано с его окислением кислородом воздуха, особенно интенсивно идёт старение при соприкосновении масла с озоном;

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Диэлектрические материалы — Материаловедение В зависимости от мощности тока, проходящего по проводнику, используют разные типы изоляции, которые отличаются своими возможностями. Спрашивайте, я на связи!

Свойства диэлектриков

По состоянию диэлектрики делят на газообразные, жидкие и твердые. Наиболее часто применяются твердые электротехнические материалы. Их свойства и применение оцениваются с помощью показателей и характеристик:

  • объемное удельное сопротивление;
  • диэлектрическая проницаемость;
  • поверхностное удельное сопротивление;
  • коэффициент термической проницаемости;
  • диэлектрические потери, выраженные тангенсом угла;
  • прочность материала под действием электричества.

Объемное удельное сопротивление зависит от способности материала сопротивляться протеканию по нему тока постоянного значения. Показатель, обратный удельному сопротивлению, называется объемной удельной проводимостью.

Поверхностное удельное сопротивление определяется возможностью материала сопротивляться постоянному току, протекающему по его поверхности. Поверхностная удельная проводимость является обратной величиной к предыдущему показателю.

Коэффициент термической проницаемости отражает степень изменения удельного сопротивления после повышения температуры вещества. Обычно при увеличении температуры уменьшается сопротивление, следовательно, значение коэффициента становится отрицательным.

Диэлектрическая проницаемость определяет применение электротехнических материалов в соответствии со способностью материала создавать электроемкость. Показатель относительной проницаемости диэлектрика входит в понятие абсолютной проницаемости. Изменение емкости изоляции показывается предыдущим показателем коэффициента термической проницаемости, который одновременно показывает увеличение или уменьшение емкости с изменением температурного режима.

Тангенс угла потерь диэлектрика отражает степень потери мощности цепи относительно материала диэлектрика, подверженного действию электрического переменного тока.

Электротехнические материалы характеризуются показателем электрической прочности, который определяет возможность разрушения вещества под действием напряжения. При выявлении механической прочности существует ряд испытаний для установления показателя предела прочности на сжатие, растяжение, изгиб, кручение, при ударе и раскалывании.

Параметры изоляции

К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление,
относительную диэлектрическую проницаемость, угол диэлектрических
потерь. При оценке электроизоляционных свойств материала учитывается
также зависимость перечисленных характеристик от величин электрического
тока и напряжения.

Электроизоляционные изделия и материалы
обладают большей величиной электрической прочности в сравнении с
проводниками и полупроводниками. Важна также для диэлектрика
стабильность удельных величин при нагревании, повышении напряжении и
других изменениях.

Область использования ферромагнетиков

Их используют наиболее эффективно для создания сердечников трансформаторных катушек. Применение материала позволяет намного увеличить магнитное поле трансформатора, при этом, не изменяя показания силы тока. Такие вставки из ферритов позволяют экономить расход электричества при работе прибора. Электротехнические материалы и оборудование после выключения внешнего магнитного воздействия сохраняют магнитные показатели, и поддерживает поле в соседнем пространстве.

Элементарные токи не проходят после выключения магнита, таким образом, создается стандартный постоянный магнит, который эффективно работает в наушниках, телефонах, измерительных приборах, компасах, звукозаписывающих устройствах. Очень популярны в применении постоянные магниты, не проводящие электричество. Получают их соединением железных окислов с другими различными оксидами. Магнитный железняк относится к ферритам.

Газообразные изоляторы

Практически все газообразные электроизоляционные материалы обеспечивают диэлектрическую проницаемость, в коэффициенте равную 1. К плюсам таких изделий можно отнести небольшую долю диэлектрических потерь, хотя и степень пробоя тоже невелика. Как правило, основной газообразной средой с функцией электрического изолятора выступает воздух, дополненный специальными включениями. Но к сегодняшнему дню получил широкое распространение и элегаз, который применяется в качестве диэлектрической основы. Газообразные виды электроизоляционных материалов базируются на гексафториде серы, что обеспечивает более высокую защиту в показателе пробоя, а в некоторых случаях наблюдается и дугогасительная способность. Когда речь идет о сложных условиях эксплуатации целевого объекта защиты, газовая среда может дополняться органическими изоляторами.

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости

С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Газообразные диэлектрики

Наиболее
распространенными газообразными диэлектриками являются воздух, азот,
водород и элегаз. Электроизоляционные газы делятся на естественные и
искусственные. К естественным относится воздух, которые применяется в
качестве изоляции между токоведущими частями линий электропередач и
электрических машин. В качестве изолятора воздух имеет недостатки,
которые делает невозможным его использование в герметичных устройствах.
Из-за наличия высокой концентрации кислорода воздух является
окислителем, и в неоднородных полях проявляется низкая электрическая
прочность воздуха.

В силовых трансформаторах и высоковольтных
кабелях в качестве изоляции используют азот. Водород, кроме
электроизоляционного материала, также представляет собой принудительное
охлаждение, поэтому часто используется в электрических машинах. В
герметизированных установках чаще всего применяют элегаз. Заполнение
элегазом делает устройство взрывобезопасным. Применяется в
высоковольтных выключателях благодаря своим дугогасящим свойствам.

Лаки и эмали для электрической изоляции

Растворы веществ, образующих при застывании пленку, представляют собой современные электротехнические материалы. К этой группе относят битумы, высыхающие масла, смолы, целлюлозные эфиры или соединения и сочетания этих компонентов. Превращение вязкого компонента в изолятор происходит после испарения из массы нанесенного растворителя, и образования плотной пленки. По способу нанесения пленки подразделяют на клеящие, пропиточные и покрывающие.

Пропиточные лаки используют для обмоток электроустановок с целью повысить коэффициент теплопроводности и сопротивление влаге. Покрывающие лаки создают верхнее защитное покрытие от влаги, мороза, масла для поверхности обмоток, пластмассы, изоляции. Клеящие компоненты способны склеивать пластинки слюды с другими материалами.

Слюдяные изоляционные материалы

Слюдяные изоляционные материалы изготавливаются из слюды — минерала кристаллического строения. Слюду расщепляют на отдельные пластинки и склеивают с помощью лака или смолы. Промышленность выпускает несколько видов слюдяных изоляционных материалов. Это мусковит, миканит, флогопит. Мусковит обладает самыми лучшими характеристиками и применяется при изготовлении конденсаторов, прокладок электроприборов. Миканиты бывают гибкие (марки ГФС, ГМС), твердые (марки ПМГ, ПФГ), чаще используются для прокладок и формовочные (мари ФФГ и ФМГ). Миканиты применяются для изготовление каркасов и используются в качестве прокладок и для загильзовки в обмотках электрических машин. Слюдяные изоляционные материалы имеют высокую нагревостойкость порядка 130—180° С, диэлектрическую прочность в пределах 15—20 кВ/мм и отличную влагостойкость.


Из щипаной слюды, наклеенной на ткань или бумагу изготовляют микаленту. Микалента имеет ширину 12—35 мм и толщину 0,08—0,17 мм. Микалента выпускается марками ЛФЧ, ЛМЧ, ЛМС, ЛФС. В конце марки ставят римские цифры I или II. Миколента с цифрой I имеет повышенную электрическую прочность, а с цифрой II -нормальную электрическую прочность. В настоящее время из за дефицита слюды как сырья и ее дороговизны, часто стали использовать отходы слюды. Из отходов стали изготавливать слюдяную бумагу, слюдиниты, стеклослюдиниты и другие электроизоляционные материалы.

Вакуум как изолятор

Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.

Физические и химические показатели диэлектриков

В диэлектриках содержится определенное число высвобожденных кислот. Количество едкого калия в миллиграммах, необходимое для избавления от примесей в 1 г вещества, носит название кислотного числа. Кислоты разрушают органические материалы, оказывают отрицательное действие на изоляционные свойства.

Характеристика электротехнических материалов дополняется коэффициентом вязкости или трения, показывающим степень текучести вещества. Вязкость делят на условную и кинематическую.

Степень водопоглощения определяется в зависимости от массы воды, впитанной элементом испытательного размера после суток нахождения в воде при заданной температуре. Эта характеристика указывает на пористость материала, повышение показателя ухудшает изоляционные свойства.

Характеристики электроизоляторов

Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика

В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики

Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.

Твердые диэлектрики

Традиционно под изоляторами данного типа понимаются такие материалы, как стекло, кварц, фарфор, пластики и резина. Их происхождение может быть натуральным и синтетическим. В тонких слоях изоляторов могут быть повышенные показатели удельного сопротивления и напряжения пробоя – эти значения зависят от диэлектрической проницаемости и электрической прочности структуры. Увеличение разности потенциалов по отношению к твердому или жидкому диэлектрику будет повышать ток, проходящий целевой объект. В итоге это явление способствует формированию вблизи катода положительного пространственного заряда на фоне отрыва электронов. Электрический пробой можно будет рассматривать как результат искажения заряженного поля в структуре самого изолятора. Твердотельные электроизоляционные материалы подвергаются поляризации, поэтому их диэлектрическая постоянная превышает единицу. Также в момент приложения переменных электрических полей поляризация способствует образованию диэлектрических потерь. В этом контексте стоит выделить материалы, которые даже в высокочастотных полях имеют минимальные диэлектрические потери. К таким можно отнести полиэтилен и кварц.

Волокнистые электроизоляционные материалы

Волокнистые материалы часто применяются для изоляции в электрических аппаратах и машинах. К ним относят материалы растительного происхождения (каучук, целлюлозу, ткани), синтетический текстиль (нейлон, капрон), а также материалы из полистирола, полиамида и т.д.

Органические волокнистые материалы обладают высокой гигроскопичностью, поэтому редко используются без специальной пропитки.

Эффективная и долговечная работа электрических машин и установок напрямую зависит от состояния изоляции, для устройства которой применяют электротехнические материалы. Они характеризуются набором определенных свойств при помещении в условия .

Что такоей диэлектрики? Какими характеристиками и свойствами обладают? Какие виды существуют? Все это объясняется в данной статье.

Электрическая прочность является важной характеристикой, поэтому заслуживает детального изучения и рассмотрения. Что представляет собой электропроводность диэлектриков? Рассмотрим особенности классификации диэлектриков, их практического использования в различных отраслях промышленности

Что представляет собой электропроводность диэлектриков? Рассмотрим особенности классификации диэлектриков, их практического использования в различных отраслях промышленности.

Основными энергосберегающими средствами становятся изоляционные материалы. Технология изготовления таких изделий позволяет утеплить и сохранить температурные показатели без вреда для окружающих. При проведении мероприятий по изоляции можно сохранить .

Изофлекс 191 – это электроизоляционный композитный материал. Его компоненты – стеклянная ткань электротехнического назначения, обе стороны которой ламинированы полиэтилентерефталатной пленкой.

Изоляционная лента ПВХ нашла широкое применение в самых разных сфера — от бытовых работ до изоляции нефтегазопроводов.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Газообразные диэлектрики Синтетическими жидкими диэлектриками являются и кремний- органические жидкости продукт синтеза кремнистых и углеродных соединений. Спрашивайте, я на связи!

Конденсаторы

Электрическая изоляция является важным условием полноценной работоспособности конденсаторов. В некоторых случая сам конденсатор выступает как диэлектрик в составе сложной электротехнической цепи. Такие приборы имеют разное применение, в том числе выделяется нейтрализация индукционных эффектов в линиях с переменным током, накопление заряда, а также получение токовых импульсов для всевозможных приложений. Для использования конденсатора в качестве изоляционной точки необходимо иметь представление о требуемой емкости. В приборах она рассчитывается исходя из характеристик системы или посредством вычисления размера заряда на обкладке. В самой конструкции для обеспечения защитной функции могут применяться электроизоляционные материалы в виде лаков и масел. В зависимости от типа конденсатора определяется и набор вторичных функций – например, учитывается горючесть, влагостойкость, износостойкость и т.д.

Электроизоляционные лакированные ткани

Лакоткани и стеклоткани представляют собой гибкий материал и изготовляют из х/б, стеклянной или шелковой ткани. После этого ткань пропитывают масляно-битумным или масляным лаком или другим изоляционным составом. Они выпускаются рулонами толщиной 0,1—0,3 мм и шириной от 700 до 1000 мм. Марки лакоткани, выпускаемые промышленностью ЛХС, ЛХСМ, ЛХСС, ЛХЧ, ЛШС. Марки стеклоткани ЛСБ, ЛСМ, ЛСЭ, ЛСММ, ЛСК, ЛСКР, ЛСКЛ. Лакоткань шелковую марки ЛШС выпускают также и толщиной 0,08 мм, а ЛШСС может иметь толщину 0,04 мм.


Лакоткань

У марок лакотканей и стеклотканей аббревиатура в названии расшифровывается следующим образом: Л — лакоткань; X — хлопчатобумажная; С — на втором месте — стеклянная; К — на втором месте — капроновая; С — на третьем месте — светлая; К — на третьем месте — кремнийорганическая; С — на четвертом месте — специальная; Л — на четвертом месте — липкая; Ч — черная; Ш — шелковая; Б — битумно-маслянноалкидная; М — маслостойкая; Р — резиновая; Э — эскапоновая. Стеклоткань имеет высокую нагревостойкостью. Марки ЛСКЛ и ЛСК — около 180°С, а марка ЛБС доходит до 130° С. Их электрическая прочность составляет 35 – 40 кВ/мм.


Стеклоткань

Лакоткань и стеклоткань используются в качестве электро и тепло изоляционных материалов. Чаще всего ими изолируют слои обмоток катушек.

Другие металлы

Медь широко применяется в производстве токопроводящих деталей. Медь тяжелее стали и чугуна. Обладает хорошей пластичностью.

Свинец плохой проводник тепла и тока. В промышленности применяется при производстве аккумуляторов, кабеля и т.п. Он очень мягкий и пластичный. Часто используется в соединении с другими металлами.

Цинк, своего рода тяжелый металл с сильным металлическим блеском. Большое количество цинка используется для шинкования деталей. В основном цинк применяется в сплавах. Так же цинк применяют при производстве белил.

Олово, довольно мягкий металл, широко применяемы в быту и промышленности, за счет устойчивости к воздуху, воды, слабым кислотам. Так же олово входит в состав припоев, антифрикционных сплавов и бронз.

Баббиты – это сплав на основе меди, цинка и олова, алюминия. В основном применяются для заливки подшипников в двигателях, турбин, насосов и т.п.

Бронза, разделяется на оловянную бронзу и без оловянную. Оловянные бронзы обладают высокой антикоррозийностью, а также высокими литейными свойствами. Но широкого применения они не нашли, так как олово достаточно дорогой и дефицитный металл. Зато без оловянные бронзы нашли широкое применение в промышленности.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: