Структура Периодической системы элементов
Периодическая таблица химических элементов
На настоящий момент Периодическая таблица Менделеева содержит 118 химических элементов. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.
Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.
Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов. В кратком варианте таблицы, используемой в школьных учебниках, элементы разделены на восемь групп. Каждая из них делится на главную (A) и побочную (B) подгруппы, которые объединяют элементы со сходными химическими свойствами.
Каждый элемент обозначается одной или двумя латинскими буквами. Порядковый номер элемента (число протонов в его ядре) обычно пишется в левом верхнем углу. Также в ячейке элемента указана его относительная атомная масса (сумма масс протонов и нейтронов). Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учётом их содержания в природе. Поэтому обычно она является дробным числом.
Чтобы узнать количество нейтронов в ядре элемента, необходимо вычесть его порядковый номер из относительной атомной массы (массового числа).
«Периодическая система химических элементов»
Ключевые слова конспекта: Периодическая система химических элементов Д.И. Менделеева, группы и периоды Периодической системы, физический смысл порядкового номера химического элемента.
Периодическая система химических элементов — это таблица, в которой все химические элементы расположены в порядке возрастания атомных номеров. Таблица включает в себя периоды и группы, т.е. горизонтальные строчки и вертикальные столбцы.
Период — это последовательность (горизонтальный ряд в таблице) элементов с возрастающими атомными номерами, начинающаяся щелочным металлом (или водородом) и заканчивающаяся благородным газом.
Число электронных слоев в атомах данного периода равно номеру периода.
В периодах с возрастанием атомного номера Z металлические свойства ослабевают, а неметаллические усиливаются.
Группа — это вертикальная колонка элементов в таблице, включающая элементы с одинаковой максимальной степенью окисления, равной номеру группы, и одинаковой отрицательной степенью окисления, для атомов неметаллов равной номеру группы минус 8.
В группах с возрастанием атомного номера Z металлические свойства усиливаются, а неметаллические ослабевают. Число валентных электронов атома обычно равно номеру группы.
В коротком варианте таблицы Менделеева различают малые периоды — 1-й, 2-й и 3-й, содержащие 2, 8 и 8 элементов соответственно, а также большие периоды — 4-й, 5-й, 6-й и незавершенный 7-й. Каждый большой период таблицы включает две строчки (два ряда). Например, в 4-м периоде, начинающемся калием 19K, последний элемент в верхней строчке — никель 28Ni, он в числе элементов триады (Fe, Со, Ni) попадает в VIII группу. Следующий элемент — медь 29Cu записан строчкой ниже и находится в I-й группе.
Каждая группа с номерами от I до VIII включает две группы — А и Б.
A-группы включают элементы малых периодов, а также элементы больших периодов, которые по свойствам наиболее близки к соответствующим элементам малых периодов.
Б-группы включают элементы больших периодов, в атомах которых электроны, появляющиеся в них с увеличением заряда ядра, попадают в слой, предшествующий внешнему.
Физический смысл порядкового номера химического элемента:
- это число нейтронов в атоме;
- это относительная атомная масса;
- это число энергетических уровней в атоме;
- это число протонов в ядре.
Конспект урока «Периодическая система химических элементов».
Следующая тема: «Закономерности изменения свойств элементов и их соединений в связи с положением в Периодической системе».
Структура периодической системы
H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo |
Iа | IIа | IIIб | IIIб: лантаноиды и актиноиды | IVб | Vб | VIб | VIIб | VIIIб | Iб | IIб | IIIа | IVа | Vа | VIа | VIIа | VIIIа | ||||||||||||||||
Щелочные металлы | Щёлочноземельные металлы | Лантаноиды | Актиноиды | Переходные металлы |
Лёгкие металлы | Полуметаллы | Неметаллы | Галогены | Инертные газы |
Таблица Менделеева с выделением s-, p-, d-, f- элементов
Разными цветами в данном варианте таблицы Менделеева отмечены s-, p-, d- и f- элементы. Напоминаю, что элемент относится к одному из этих типов, если внешние электроны в атоме данного элемента находятся соответственно на s-, p-, d- или f- подуровне. Например, электронная формула натрия имеет вид: 1s2s2s22p63s1. Внешний электронный уровень — 3s, следовательно, натрий относится к s-элементам. Электронная формула кислорода: 1s2s2s22p4. Внешний электронный подуровень — 2p, значит кислород — это р-элемент.
Свойства элементов из этих 4 групп отличаются достаточно сильно. Например, среди d-элементов присутствуют только металлы, а большинство неметаллов относятся к p-элементам.
Периоды | Группы элементов | |||||||||
I | II | III | IV | V | VI | VII | VIII | |||
1 |
1 |
1 |
2 |
|||||||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
3 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
||
4 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
|||
5 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
|||
6 |
55 |
56 |
57 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
|||
7 |
87 |
88 |
89 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
Высшие оксиды | R2O | RO | R2O3 | RO2 | R2O5 | RO3 | R2O7 | RO4 | ||
Водородные соед. | RH4 | RH3 | H2R | HR |
*Лантаноиды |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
^Актиноиды |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
s-элементы | p-элементы | d-элементы | f-элементы |
А>
Свойства таблицы Менделеева
Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
- усиливаются металлические свойства и ослабевают неметаллические;
- возрастает атомный радиус;
- возрастает сила образованных элементом оснований и бескислородных кислот;
- электроотрицательность падает.
Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).
Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.
Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.
Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
В пределах периода с увеличением порядкового номера элемента:
- электроотрицательность возрастает;
- металлические свойства убывают, неметаллические возрастают;
- атомный радиус падает.
Периодический закон Д. И. Менделеева
Проанализировав изменения свойств элементов II и III периода, можно сделать выводы, которые Д. И. Менделеев записал в виде периодического закона.
Благодаря периодическому закону, зная расположение элемента в периодической системе, мы можем прогнозировать свойства веществ. Элементы входят в состав как простых, так и сложных веществ, влияя при этом на их свойства. Обобщить данные тезисы можно в виде таблицы.
Таблица 1. Изменение свойств химических элементов в ПСХЭ
Рассмотрим на примере I группы. Li, Na, K, Cs, Fr собрались в компанию одновалентных металлов, которые образуют основные оксиды состава Ме2О. При взаимодействии с водой образуют щёлочь. Эти характеристики их объединяют. Теперь рассмотрим отличия. Вам уже известно, что в пределах группы с ростом атомной массы металлические свойства увеличиваются.
Как это сказывается на реакционной способности данных металлов?
Интенсивность и скорость реакции калия и лития с водой будет отличаться. Реакция калия будет сопровождаться бурным выделением водорода, в то время как литий будет спокойно реагировать с водой.
Зная формулу и состав высшего оксида, можем предположить его характер. Например, марганец образует оксиды MnO, MnO2, Mn2O7. Таблица поможет нам предположить их свойства.
MnO – будет основным оксидом (ищем аналогию со II группой), ему будет отвечать основание Mn(OH)2. Не трудно догадаться, что MnO2 и Mn2O7 будут кислотными (подобно IV и VII группе), они образуют кислоты H2MnO3 и HMnO4.
Свинец образует два оксида PbO и PbO2. Оксид свинца (II) PbO будет основной, оксид свинца (IV)PbO2– кислотный.
Как все началось
За много лет перед тем как Дмитрий Менделеев открыл периодическую таблицу, многие ученые пытались систематизировать известные в то время химические вещества. Но недостаток информации о каждом химическом элементе и верной атомной массе привел к тому, что созданные таблицы не имели достоверных данных.
Именно 1869 год ознаменовался открытием известной таблицы. В это время химик на заседании научного сообщества поведал собственным коллегам о недавно сделанном открытии. Каждый химический элемент имеет свое отдельное место, исходя из величины и молекулярной массы.
Стоит заметить, что также в таблице есть пустые клетки, их в дальнейшем заполнял новый периодический элемент, открытие которого предсказал сам ученый (сюда относится скандий, галлий и германий). После того, как изобретение было представлено миру, оно также несколько раз исправлялось и дополнялось. Во время совместной работы с химиком из Шотландии У. Рамзаем российский ученый дополнил систему группой инертных газов (так называемая нулевая группа).
Далее история разработки системы химических элементов прямым образом связывалась с физикой. Усердный труд над системой ведется в настоящее время, современные светлые умы постоянно дополняют таблицу новыми элементами по мере их открытия. Невозможно переоценить создание системы Менделеева, поскольку за счет нее удалось:
- классифицировать познания о характеристиках каждого уже открытого элемента;
- спрогнозировать появление новых веществ;
- дать толчок развитию физики ядра и атома.
Есть несколько вариантов изложения классификации химических элементов, исходя из периодического закона, но самой известной и распространенной является привычная многим таблица Д. Менделеева.
Длиннопериодная форма таблицы Менделеева
Именно нечто подобное и было создано Дмитрием Ивановичем Менделеевым. Именно такой вариант таблицы наиболее наглядно иллюстрирует периодический закон. К сожалению, у длиннопериодной формы есть один недостаток: таблица занимает слишком много места. Именно поэтому многие отдают предпочтение короткопериодной форме.
  | IA | IIA | IIIB |   | IVB | VB | VIB | VIIB |   VIIIB | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |||||||||||||||
1 | 1 H |   | 1H | 2He | ||||||||||||||||||||||||||||
2 | 3Li | 4Be |   | 5B | 6C | 7N | 9F | 10Ne | ||||||||||||||||||||||||
3 | 11Na | 12Mg |   | 13Al | 14Si | 15P | 16S | 17Cl | 18Ar | |||||||||||||||||||||||
4 | 19K | 20Ca | 21Sc |   | 22Ti | 23V | 24Cr | 25Mn | 26Fe | 27Co | 28Ni | 29Cu | 30Zn | 31Ga | 32Ge | 33As | 34Se | 35Br | 36Kr | |||||||||||||
5 | 37Rb | 38Sr | 39Y |   | 40Zr | 41Nb | 42Mo | 43Tc | 44Ru | 45Rh | 46Pd | 47Ag | 48Cd | 49In | 50Sn | 51Sb | 52Te | 53I | 54Xe | |||||||||||||
6 | 55Cs | 56Ba | 57La | 58Ce | 59Pr | 60Nd | 61Pm | 62Sm | 63Eu | 64Gd | 65Tb | 66Dy | 67Ho | 68Er | 69Tm | 70Yb | 71Lu | 72Hf | 73Ta | 74W | 75Re | 76Os | 77Ir | 78Pt | 79Au | 80Hg | 81Tl | 82Pb | 83Bi | 84Po | 85At | 86Rn |
7 | 87Fr | 88Ra | 89Ac | 90Th | 91Pa | 92U | 93Np | 94Pu | 95Am | 96Cm | 97Bk | 98Cf | 99Es | 100Fm | 101Md | 102No | 103Lr | 104Ku | 105Ns | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
А>
Периодическая таблица Менделеева
До Дмитрия Ивановича собрать элементы в один список пытались многие умы Европы. С начала XIX века они предприняли множество попыток сопоставления веществ.
В 1869 г. свой первый план представляет и Менделеев, через 2 года – завершает доработку и издает последний вариант таблицы.
Основная идея группировки – периодичность. Расположив элементы в порядке увеличения атомной массы, он заметил, что время от времени их свойства повторяются.
Ко 2-й половине XIX века миру было известно намного меньше веществ, чем сегодня, так что химик оставил пустые места в своей таблице, предполагая открытие новых элементов, и даже сумел заранее определить свойства открытых впоследствии галлия Ga 31 и германия Ge 32.
С каждым последующим номером элемента возрастает его атомная масса, заряд ядра, уровень электронов (количество элементов и их связей), показатели активности повторяются в зависимости от периода.
Таблица Менделеева с выделением главных и побочных подгрупп
Элементы главных подгрупп обозначены фиолетовым цветом, побочных — серым. Я напоминаю, что свойства элементов, находящихся в одной группе, но в разных подгруппах, отличаются достаточно сильно.
Например, натрий, калий, медь и серебро находятся в I группе: Na и K — в главной подгруппе, Cu и Ag — в побочной. Свойства натрия и калия весьма похожи — активные металлы, бурно реагирующие с водой, легко окисляющиеся на воздухе, имеют низкие температуры плавления и кипения. Все это сильно отличается от свойств меди и серебра: инертные металлы, которые не реагируют не только с водой, но и с большинством кислот, на воздухе устойчивы, температуры плавления и кипения достаточно высоки.
Еще ярче отличия заметны, например, в VI группе. Кислород, сера, селен (главная подгруппа) — типичные неметаллы, а хром, молибден и вольфрам, находящиеся в побочной подгруппе, относятся к металлам.
Все проблемы исчезают, если вы используете таблицы Менделеева: «мешанина» из элементов главных и побочных подгрупп исчезает, и мы начинаем отчетливо видеть логику периодического закона.
Периоды | Группы элементов | |||||||||
I | II | III | IV | V | VI | VII | VIII | |||
1 |
1 |
1 |
2 |
|||||||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
3 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
||
4 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
|||
5 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
|||
6 |
55 |
56 |
57 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
|||
7 |
87 |
88 |
89 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
Высшие оксиды | R2O | RO | R2O3 | RO2 | R2O5 | RO3 | R2O7 | RO4 | ||
Водородные соед. | RH4 | RH3 | H2R | HR |
*Лантаноиды |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
^Актиноиды |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
Что ждёт таблицу Менделеева в ближайшем будущем?
Границы таблицы попытался определить Ричард Фейнман
Элементы 119 и 120, над получением которых работают исследователи Объединенного института ядерных исследований (ОИЯИ) в Дубне (Московская область), обещают показать принципиально новые физические свойства.
Они которые не вписываются в существующую физическую модель мироздания. А закон Менделеева продолжает работать.
Ричард Фейнман предположил, что таблица закончится на 137-м элементе. Но не потому, что больше их не существует — мы просто не сможем определить количество протонов и нейтронов в его ядре.
В ближайшие 2 года ожидается открытие 120 элемента
Число 1/137 – постоянная Зоммерфельда (постоянная тонкой структуры), которая описывает вероятность поглощения или излучения электроном фотона.
Элемент с 137 электронами в соответствии с определением этой константы должен с вероятностью в 100% поглощать падающий на него фотон.
Его электроны будут вращаться со скоростью света. А электроны элемента 139, чтобы существовать, должны вращаться быстрее, чем скорость света. Не может быть?
Менделеев объединил усилия всех
Увы, текущие расчеты показывают, что фотоны в огромных атомах оганесона должны превысить скорость света, что противоречит самой сути фотона – единичного кванта света.
Это нарушает основные принципы квантовой физики. Но, возможно, именно открытие новых элементов Периодической таблицы Менделеева даст ключ к созданию Теории Всего, которая должна объединить существующие знания в естественных науках.
Закон, открытый 150 лет назад русским ученым, изменит понимание мироздания. Быть может ещё сильнее, чем когда-то это сделала Теория относительности.
iPhones.ru
Интересные факты.
Рассказать
Объяснительная и предсказательная функции Периодического закона
Периодическая система химических элементов Менделеева послужила мощным толчком для развития химической науки. Ученые получили твердое основание из систематизированных химических элементов, благодаря которым стало возможно проведение опытов по обнаружению новых элементов и выявлению ранее неоткрытых свойств.
Периодическая система объясняет взаимосвязи между элементами и их схожие свойства. Благодаря их систематизации произошло выявление групп и подгрупп, периодов, объединивших элементы по свойствам.
С помощью таблицы появилась возможность предсказывать открытие элементов, о которых большинство ученых того времени даже не догадывалось. Помимо открытия уже существующих в природе, но не найденных элементов, стало возможным синтезирование новых из уже существующих.
История открытия Периодического закона.
К середине XIX века были открыты 63 химических элемента, и попытки найти закономерности в этом наборе предпринимались неоднократно.
В 1829 году Дёберейнер опубликовал найденный им «закон триад»: атомный вес многих элементов близок к среднему арифметическому двух других элементов, близких к исходному по химическим свойствам (стронций, кальций и барий; хлор, бром и йод и др.). Первую попытку расположить элементы в порядке возрастания атомных весов предпринял Александр Эмиль Шанкуртуа (1862), который разместил элементы вдоль винтовой линии и отметил частое циклическое повторение химических свойств по вертикали. Обе указанные модели не привлекли внимания научной общественности.
В 1866 году свой вариант периодической системы предложил химик и музыкант Джон Александр Ньюлендс, модель которого («закон октав») внешне немного напоминала менделеевскую, но была скомпрометирована настойчивыми попытками автора найти в таблице мистическую музыкальную гармонию. В этом же десятилетии появились ещё несколько попыток систематизации химических элементов; ближе всего к окончательному варианту подошёл Юлиус Лотар Мейер (1864). Д. И. Менделеев опубликовал свою первую схему периодической таблицы в 1869 году в статье «Соотношение свойств с атомным весом элементов» (в журнале Русского химического общества); ещё ранее (февраль 1869 г.) научное извещение об открытии было им разослано ведущим химикам мира.
По легенде, мысль о системе химических элементов пришла к Менделееву во сне, однако известно, что однажды на вопрос, как он открыл периодическую систему, учёный ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».
Написав на карточках основные свойства каждого элемента (их в то время было известно 63, из которых один — дидим Di — оказался в дальнейшем смесью двух вновь открытых элементов празеодима и неодима), Менделеев начинает многократно переставлять эти карточки, составлять из них ряды сходных по свойствам элементов, сопоставлять ряды один с другим. Итогом работы стал отправленный в 1869 году в научные учреждения России и других стран первый вариант системы («Опыт системы элементов, основанной на их атомном весе и химическом сходстве»), в котором элементы были расставлены по девятнадцати горизонтальным рядам (рядам сходных элементов, ставших прообразами групп современной системы) и по шести вертикальным столбцам (прообразам будущих периодов). В 1870 году Менделеев в «Основах химии» публикует второй вариант системы («Естественную систему элементов»), имеющий более привычный нам вид: горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.
Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Например, натрий похож на калий, фтор похож на хлор, а золото похоже на серебро и медь. Разумеется, свойства не повторяются в точности, к ним добавляются и изменения. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две — атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеевым были предприняты очень смелые шаги: он исправил атомные массы некоторых элементов (например, бериллия, индия, урана, тория, церия, титана, иттрия), несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими (например, таллий, считавшийся щелочным металлом, он поместил в третью группу согласно его фактической максимальной валентности), оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы. В 1871 году на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.
Научная достоверность Периодического закона получила подтверждение очень скоро: в 1875—1886 годах были открыты галлий (экаалюминий), скандий (экабор) и германий (экасилиций), для которых Менделеев, пользуясь периодической системой, предсказал не только возможность их существования, но и, с поразительной точностью, целый ряд физических и химических свойств.
История
Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента.
К моменту открытия закона было известно 63 химических элемента. Однако атомные массы многих из этих элементов были определены ошибочно.
Сам Д. И Менделеев в 1869 году сформулировал свой закон как периодическую зависимость от величины атомных весов элементов, так как в XIX веке наука еще не имела сведений о строении атома. Однако гениальное предвидение ученого позволило ему более глубоко, чем все его современники, понять закономерности, которые обуславливают периодичность свойств элементов и веществ. Он учитывал не только возрастание атомной массы, но и уже известные свойства веществ и элементов и, взяв за основу идею периодичности, смог совершенно точно предсказать существование и свойства неизвестных на тот момент науке элементов и веществ, исправить атомные массы ряда элементов, правильно расположить элементы в системе, оставив пустые места и сделав перестановки.
Рис. 1. Д. И. Менделеев.
Существует миф, что периодическая система приснилась Менделееву. Однако это только красивая история, которая не является доказанным фактом.
Как организована периодическая система
Все составляющие таблицы располагаются по рядам с учетом увеличения их массы, а сама длина каждого ряда составлена таким способом, чтобы расположенные в нем элементы имели похожие характеристики.
Если описывать кратко, то внутри всех столбцов элементы размещаются в соответствии со схожими свойствами, которые варьируются при переходе между столбцами. Каждый элемент, включая №92, является природным, а уже начиная с №93 идут искусственные соединения, создающиеся исключительно в лабораториях.
Изначально периодическая таблица представляла собой наглядную систему уже существующих в природе элементов, при этом не было никакой основы, почему они должны стоять именно так. Но с появлением квантовой механики все обрело смысл, и расположение каждого элемента теперь было понятно.
Правильный творческий процесс
Если же поднимать вопрос, какой урок организации творческого процесса можно извлечь из истории, как Д. Менделеев создал свою периодическую таблицу, то можно рассмотреть труд А. Пуанкаре и Н. Уоллеса, касаемо исследования творческого мышления. В соответствии с их работами, есть 4 базовых этапа творческого мышления:
- Подготовительный этап – здесь должна появляться основная задача и предприниматься первые попытки ее решения.
- Этап инкубации – в это время наблюдается временное отвлечение от задумки, но на уровне подсознания все также продолжается работа над поисками решения.
- Этап озарения – исследователь интуитивно находит решение. При этом, обнаружиться данное решение может в ситуации, которая не имеет никакого отношения к проблеме.
- Проверочный этап – момент испытаний и реализации решения, в это время проводится проверка данного решения и потенциальное развитие в будущем.
Как можно увидеть, во время создания таблицы российский химик интуитивно прошел каждый этап творческого процесса. Об эффективности данного принципа можно судить по итоговому результату, ведь система была разработана. Рассматривая то, что ее систематизация стала большим шагом вперед не только для химии, но и для человечества, указанные выше 4 этапа могут использоваться для реализации небольшого проекта или же масштабного замысла. Стоит только помнить, что ни одно решение задачи или научное открытие не может найтись само по себе, как бы вы этого не желали, но увидеть решение во сне невозможно, насколько бы крепко вы не спали. Чтобы достичь результата, необходимо обладать рядом знаний и навыков, а также грамотно применять собственный потенциал, упорно трудиться и неустанно идти вперед к намеченной цели. И, конечно же, тренировать мозг, например, с помощью онлайн-тренажеров Викиум.
Количество элементов, ряды
118 элемент периодической системы имеет название «оганесон». Впервые он был синтезирован в Дубне в 2002 году. Свое название данный химический элемент получил в 2016 году в честь ученого Ю. Ц. Оганесяна. Этот элемент является последним в таблице на момент Y года.
Согласно длиннопериодному варианту таблица имеет 7 рядов по количеству периодов, а также 2 ряда под основной таблицей – ряд лантаноидов и ряд актиноидов.
Ряды включают в себя:
- Водород Н, Гелий Не.
- Литий Li, Бериллий Be, Бор B, Углерод C, Азот N, Кислород O, Фтор F, Неон Ne.
- Натрий Na, Магний Mg, Алюминий Al, Кремний Si, Фосфор P, Сера S, Хлор Cl, Аргон Ar.
- Калий K, Кальций Ca, Скандий Sc, Титан Ti, Ванадий V, Хром Cr, Марганец Mn, Железо Fe, Кобальт Co, Никель Ni, Медь Cu, Цинк Zn, Галий Ga, Германий Ge, Мышьяк As, Селен Se, Бром Br, Криптон Kr.
- Рубидий Rb, Стронций Sr, Иттрий Y, Цирконий Zr, Ниобий Nb, Молибден Mo, Технеций Tc, Рутений Ru, Родий Rh, Галладий Pd, Серебро Ag, Кадмий Cd, Индий In, Олово Sn, Сурьма Sb, Теллур Te, Йод I, Ксенон Xe.
- Цезий Cs, Барий Ba, Лантан La, Гафний Hf, Тантал Ta, Вольфрам W, Рений Re, Осмий Os, Иридий Ir, Платина Pt, Золото Au, Ртуть Hg, Таллий Tl, Свинец Pb, Висмут Bi, Полоний Po, Астат At, Радон Rn.
- Франций Fr, Радий Ra, Актиний Ac, Резерфордий Rf, Дубний Db, Сиборгий Sg, Борий Bh, Хассий Hs, Мейтнерий Mt, Дармштадтий Ds, Рентгений Rg, Коперниций Cn, Нихоний Nh, Флеровий Fl, Московий Mc, Ливерморий Lv, Теннессин Ts, Оганесон Og.
- Лантаноиды: Лантан La, Церий Ce, Празеодим Pr, Неодим Nd, Прометий Pm, Самарий Sm, Европий Eu, Гадолиний Gd, Тербий Tb, Диспрозий Dy, Гольмий Ho, Эрбий Er, Тулий Tm, Иттербий Yb, Лютенций Lu.
- Актиноиды: Актиний Ac, Торий Th, Протактиний Pa, Уран U, Нептуний Np, Плутоний Pu, Америций Am, Кюрий Cm, Берклий Bk, Калифорний Cf, Эйнштейний Es, Фермий Fm, Менделевий Md, Нобелий No, Лоуренсий Lr.