Какие виды энергии составляют электромагнитный спектр?
Другие виды электромагнитного излучения, которые испускают объекты
- Радиоволны: если бы наши глаза могут видеть радиоволны, мы бы могли (в теории) смотреть ТВ программы просто глядя на небо! Длина радиоволны: 30 см – 500 м. Радиоволны охватывают огромную полосу частот варьируемой от десятков сантиметров высокой частоты до сотен метров в низкочастотном диапазоне. Электромагнитная волна больше, чем СВЧ радиоволна микроволновой печи.
- СВЧ: такие радиоволны используются не только для приготовления пищи в микроволновой печи, но и для передачи информации в радиолокационной технике. Типичный размер: 15 см (длина карандаша).
- Инфракрасное: просто с частотой немного короче чем красный цвет. Есть своего рода невидимый «горячий свет» называемый ИК. Хотя мы не можем видеть излучение, мы можем почувствовать путем потепления кожи, когда он попадает на наше лицо — это то, что мы думаем как излучаемое тепло. Если бы глаза человека были бы как у гремучих змей человек бы видел инфракрасное излучение, как линзы ночного видения, встроенные в наших головах. Типичная длина колебания: 0,01 мм
- Видимый спектр о котором пояснено выше.
- Ультрафиолетовое: это выше частоты фиолетового света, который наши глаза могут обнаружить. Солнце передает мощное ультрафиолетовое излучение, которое человек не может видеть. Вот почему человек получает загар, даже когда плавает в море или в пасмурные дни. Вот почему так важен солнцезащитный крем. Типичная длина колебания: 500 Нм (как большая бактерия).
- Рентгеновские лучи: очень полезный тип высокочастотных волн, широко используются в медицине и безопасности. Типичный размер: 0,1 Нм (ширина атома).
- Гамма лучи: излучаются радиоактивными веществами и опасны для жизни. Типичный размер: 0,02 Нм (ядро атома).
Радиотелескоп «Спектр-М» для поиска кротовых нор
«Спектр-М», он же «Миллиметрон» — последний планируемый аппарат серии, в создании которого участвуют Россия, Китай, Франция, Швеция, Нидерланды, Италия.
По проекту представляет собой радиотелескоп миллиметрового диапазона («Спектр-Р» — сантиметрового) с десятиметровой охлаждаемой антенной из композитных материалов, базирующейся на расстоянии 1,5 миллиона километров от нашей планеты.
Орбитальная часть будет дополняться наземными базами, однако в отличие от предшественника, будет работать и в независимом режиме.
С помощью наземных составляющих комплекс получит точность, которая с Земли могла бы разглядеть волос на Луне.
А с орбиты — заглянуть увидеть процессы на горизонте событий квазаров, буквально что «изнутри».
Основная задача комплекса — исследование физических процессов ранней Вселенной.
«Миллиметрон» создан искать искажения реликтового излучения и кротовые норы, тех самых мифических окон в другой участок пространства или даже другую Вселенную, которые могут являться центром квазара.
Что ещё важнее, терагерцовый диапазон «Миллиметрона» позволит увидеть спектральные следы сложных молекул, среди которых могут находится следы вероятной жизни.
Первоначальный проект предполагал вывод на орбиту в 2019 году. Сокращение финансирования привело к сдвигу сроков на 2029-2030 годы.
Восприятие спектра цветов
Рис.3,Схема спектра основных цветов и их смешения
Впервые непрерывный спектр цветов был открыт великим учёным Исааком Ньютоном. Именно Исаак Ньютон впервые обнаружил, что белый свет, пройдя через призму диспергирует (распадается) на непрерывный спектр (рис.3). Он также заметил, если все цвета полученного спектра опять смешать, то они в итоге образуют «белый» свет. Ньютон, находясь под действием европейской нумерологии и основываясь на аналогии с семью нотами в октаве (сравните: 7 металлов, 7 планет…) разделил непрерывный спектр на составляющие его 7 основных цветов. Это разбиение во многом случайно и условно.
Сейчас эти цвета называются:
- Красный
- Оранжевый
- Жёлтый
- Зелёный
- Голубой
- Синий
- Фиолетовый
Эти основные 7 цветов спектра достаточно хорошо различимы. (См. рис.3). Глаз может отличить до нескольких сотен оттенков, когда «смешаны» различные чистые спектральные цвета, или «разбавлены» белым светом. Тренированный глаз может различать значительно больше оттенков.
Цвета света
Что мы видим, когда наблюдаем отраженный свет от объекта. Когда свет попадает на объект несколько длин колебаний поглощаются этим объектом, а некоторые отражаются. Свет различных длин волн выглядит как разные цвета. Когда мы видим объект определенного цвета, что означает, что свет этого цвета отражается от объекта. Например, когда вы видите красную рубашку, рубашка поглощает все цвета света, за исключением красного. Частота света, который мы видим, является отражение красного и мы видим эту рубашку как красную.
Черный и белый немного отличается от других цветов. Белый — это сочетание всех цветов, поэтому когда мы видим белый, объект отражает все цвета света. Черный является противоположностью. Когда мы видим черный объект, то это означает, что почти все цвета света поглощаются.
Аддитивные цвета
Аддитивные основные цвета могут быть объединены, чтобы сделать любой другой цвет. Это три цвета красный, синий и зеленый. Этот факт используется все время в технологиях, таких как компьютерные экраны и телевизоры. Объединяя только три основных вида света различными способами, можно сделать любой цвет.
Субтрактивные цвета
Если есть белый свет и хотите вычесть цвета, чтобы получить любой другой цвет, то необходимо использовать основные субтрактивные цвета для фильтрации или удаления света определенных цветов. Первичные субтрактивные цвета — голубой, пурпурный и желтый.
Спектральный анализ и температура звезд
Спектры звезд — это их паспорта с описанием всех звездных примет, всех их физических свойств. Надо лишь уметь в этих паспортах разобраться. Многое еще мы не умеем из них извлечь в будущем, но уже и сейчас мы читаем в них немало.
По спектру звезды мы можем узнать ее светимость, а следовательно, и расстояние до нее, температуру, размер, химический состав ее атмосферы, скорость движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести.
Спектральный анализ дает ученым также возможность определять скорость движения светил к нам или от нас даже в тех случаях, когда эту скорость и вообще движение светил никакими другими способами обнаружить невозможно.
Если какой-нибудь источник колебаний, распространяющихся в виде волн, движется по отношению к нам, то, понятно, длина волны колебаний, воспринимаемая нами, меняется. Чем быстрее приближается к нам источник колебания, тем короче делается длина его волны. И наоборот, чем быстрее источник колебаний удаляется, тем длина волны по сравнению с той длиной волны, которую воспринял бы наблюдатель, неподвижный по отношению к источнику, увеличивается.
То же самое происходит и со светом, когда источник света — небесное светило — движется по отношению к нам. Когда светило приближается к нам, длина волны всех линий в его спектре становится короче. А когда источник света удаляется, то длина волны тех же самых линий становится больше. В соответствии с этим в первом случае линии спектра сдвигаются в сторону фиолетового конца спектра (то есть в сторону коротких длин волн), а во втором случае они смещаются к красному концу спектра.
Точно так же путем изучения распределения яркости в спектре звезд мы узнали их температуру.
Звезды красного цвета — самые «холодные». Они нагреты до 3 тысяч градусов, что примерно равняется температуре в пламени электрической дуги.
Температура желтых звезд составляет 6 тысяч градусов. Такова же температура поверхности нашего Солнца, которое тоже относится к разряду желтых звезд. Температуру в 6 тысяч градусов наша техника пока не может искусственно создать на Земле.
Белые звезды еще более горячие. Температура их составляет от 10 до 20 тысяч градусов.
Наконец, самыми горячими среди известных нам звезд являются голубые звезды, раскаленные до 30, а в некоторых случаях даже до 100 тысяч градусов.
Классификация звезд по цвету и температуре
В недрах звезд температура должна быть значительно выше. Определить ее точно мы не можем, потому что свет из глубины звезд до нас не доходит: свет звезд, наблюдаемый нами, излучается их поверхностью. Можно говорить лишь о научных расчетах, о том, что температура внутри Солнца и звезд составляет примерно 20 миллионов градусов.
Несмотря на раскаленность звезд, нас достигает лишь ничтожная доля испускаемого ими тепла — так далеки от нас звезды. Больше всего тепла доходит к нам от яркой красной звезды Бетельгейзе в созвездии Ориона: меньше Одной десятой от миллиардной доли малой калории 1 на квадратный сантиметр за минуту.
Иными словами, собирая с помощью 2,5–метрового вогнутого зеркала это тепло, в течение года мы бы могли нагреть им наперсток воды всего лишь на два градуса!
Рентгеновский «Спектр-РГ», который создает новую карту Вселенной
Второй аппарат серии получил название «Спектр-Рентген-Гамма» и отправился на орбиту в 2019 году — фактически, опаздывая на 21 год относительно первоначальных планов проекта, созданного в 1987 году совместным коллективом ученых СССР, Финляндии, ГДР, Дании, Италии и Великобритании.
Аппарат представляет собой ту же платформу «Навигатор» разработки НПО Лавочкина, на которой базируется и комплекс «Спектр-Р», однако состав оборудования принципиально отличается.
Изначально предполагалось оборудовать исследовательский комплекс 3 рентгеновскими и 1 ультрафиолетовым телескопами, а так же парой мониторов неба и детектором гамма-всплесков.
В окончательном варианте остались только российский ART-XC и немецкий eROSITA.
Они работают в разных, но дополняющих друг друга диапазонах, выполняя картографирование всего неба в рентгеновском диапазоне с новым уровнем точности и разрешающей способности.
«Спектр-РГ» позволит регистрировать до 90 тысяч новых рентгеновских объектов ежегодно, ранее недоступных для человеческой науки.
Обсерватория, выведенная в июле 2019 (против запланированного 2011) стала первым российским аппаратом, работающим в на высоте полутора миллионов километров за Землей на линии Солнце — Земля.
Таким образом, на станцию действует только гравитация системы «Земля-Солнце», поэтому относительно Земли станция практически неподвижна.
В результате, с помощью нового «Спектра» будет построена подробная рентгеновская карта Млечного Пути и ближайших галактик.
Работа займет 6,5 лет и позволит обнаружить новые гравитационные линзы, открыть новые ядра и скопления галактик, уточнить модель темной энергии и, возможно, процесс эволюции темной материи — таинственных космологических сущностей.
История[править | править код]
Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон, который и ввёл в научный обиход термин «спектр» для обозначения полученной им в опытах над солнечным светом многоцветной полосы, похожей на радугу. В своём труде «Оптика», вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью треугольной стеклянной призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Роджер Бэкон в XIII веке. Фактически, Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света — преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом.
Следующий этап наступил через 100 лет, когда Уильям Волластон в 1802 году наблюдал тёмные линии в солнечном спектре, но не придал своим наблюдениям значения. В 1814 году эти линии независимо обнаружил и подробно описал Фраунгофер (сейчас линии поглощения в солнечном спектре называются линиями Фраунгофера), но не смог объяснить их природу. Фраунгофер описал свыше 500 линий в солнечном спектре и отметил, что положение линии D близко к положению яркой жёлтой линии в спектре пламени.
В 1854 году Кирхгоф и Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов — одних из самых мощных методов экспериментальной науки.
В 1859 году Кирхгоф опубликовал в журнале «Ежемесячные сообщения Берлинской академии наук» небольшую статью «О фраунгоферовых линиях». В ней он писал:
Спектроскоп Кирхгофа-Бунзена, Annalen der Physik und der Chemie (Poggendorff), Vol. 110 (1860).
Оптический линейчатый эмиссионный спектр азота
Примечательно, что эта работа Кирхгофа неожиданно приобрела и философское значение: ранее, в 1842 году, основоположник позитивизма и социологии Огюст Конт в качестве примера непознаваемого привёл именно химический состав Солнца и звёзд:
— Огюст Конт, «Курс позитивной философии», Книга II, Глава I (1842)
Работа Кирхгофа позволила объяснить природу фраунгоферовых линий в спектре Солнца и определить химический (или, точнее, элементный) состав его атмосферы.
Спектральный анализ открыл новую эпоху в развитии науки — исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики: Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.
В 1910 году были получены первые неэлектромагнитные спектры: Дж. Дж. Томсон получил первые масс-спектры, а затем в 1919 году Астон построил первый масс-спектрометр.
С середины XX века, с развитием радиотехники, получили развитие радиоспектроскопические, в первую очередь магнито-резонансные методы — спектроскопии ядерного магнитного резонанса (ЯМР-спектроскопия, являющаяся сейчас одним из основных методов установления и подтверждения пространственной структуры органических соединений), электронного парамагнитного резонанса (ЭПР), циклотронного резонанса (ЦР), ферромагнитного (ФР) и антиферромагнитного резонанса (АФР).
Другим направлением спектральных исследований, связанным с развитием радиотехники, стала обработка и анализ первоначально звуковых, а потом и любых произвольных сигналов.
Спектральный анализ в исследовании Солнца
Очевидно, Солнце — раскаленное тело, испускающее белый свет, спектр которого непрерывен — окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с гой самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.
Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.
Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.
Так было выяснено, что в солнечной атмосфере присутствуют те же химические элементы, что и на земле: водород, азот, натрий, магний, алюминий, кальций, железо и даже золото.
Спектры звезд, свет которых тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.
Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.
Самый легкий из всех газов, из всех химических элементов — водород — составляет на Солнце 42% по весу. На долю кислорода приходится 23% по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6% от состава солнечной атмосферы. И только 6% приходится на все остальные элементы, вместе взятые.
Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.
Средняя плотность Солнца на 40% больше плотности воды и все-таки оно ведет себя во всех отношениях как идеальный газ. Плотность на внешнем видимом краю Солнца составляет приблизительно одну миллионную от плотности воды, в то время как плотность вблизи его центра примерно в 50 раз выше плотности воды.
Открытия «Спектра», которые изменили астрономию
Уже первый аппарат серии «Спектр-Р» произвел фурор, позволив переписать существующие модели Вселенной и открыть тысячи новых объектов, хотя предполагалось, что их число можно будет пересчитать по пальцам.
За время функционирования аппарата с 2011 по 2019 год астрономы с помощью системы провели около 4 тысяч наблюдений и в подробностях изучили:
- 160 ядер активных галактик,
- 20 пульсаров (нейтронных звезд),
- 14 космических источников микроволнового излучения — мазеров.
Высокая разрешающая способность «Спектр-Р» позволила выяснить, что поток частиц на границе горизонта черной дыры в центре галактики работает иначе, создавая огромные закручивающиеся вихри, не объяснимые в рамках привычного описания.
Также «Спектр-Р» пронаблюдал и такие редкие вещи, как джет от двух вращающихся друг вокруг друга черных дыр.
Спиралевидный джет на горизонте событий черной дыры
Кроме того, исследования «Радиоастрона» позволили открыть турбулентность межзвездного вещества, которая вносит помехи при наблюдениях.
Почему это важно? На пути от Земли к центру нашей галактики Млечный путь (где должна быть черная дыра), расположено турбулентное облако. Турбулентность межзвездного вещества
Турбулентность межзвездного вещества
Данные, собранные «Спектром-Р», дают надежду на разработку алгоритмов восстановления исходного изображения.
Карта рентгеновских источников, созданная с помощью «Спектра»
С его помощью в 2020 году создали первую (из 8 планируемых) карту обзора неба с 1,1 миллионом рентгеновских источников.
Это в несколько раз превышает количество объектов, открытых за все время существования рентгеновской астрономии.
Космический радиотелескоп «Спектр-Р» и проект «Радиоастрон»
Космический радиотелескоп «Спектр-Р» вместе с наземными телескопами по всему миру образовал проект «Радиоастрон».
Космическая часть представляла собой аппарат массой 3295 кг, построенный на платформе «Навигатор» НПО Лавочкина (на которой также основаны метеорологические спутники серии «Электро-Л»), с десятиметровой антенной, состоящей из 27 лепестков.
Аппарат вывели на высокоэллиптическую орбиту: большую часть времени он проводил в 350 тысячах километров от Земли, изредка опускаясь до 500 километров.
Для «Радиоастрона» висящий на орбите «Спектр-Р» дополняли данными с
- наземной радиоинтерферометрической сети «Квазар» из трех телескопов РТ-32 «Светлое», РТ-32 «Зеленчукская», РТ-32 «Бадары»,
- радиотелескопа РТ-70 «Евпатория»,
- радиообсерватория Аресибо, Пуэрто-Рико,
- 43-метрового радиотелескопа в Грин-Бэнк штата Западная Виргиния, США,
- 100-метрового радиотелескопа в Эффельсберге, Германия.
И это только основные участники эксперимента: всего свой вклад внесли 58 радиотелескопов.
Совместная работа космической и наземной части позволила сформировать единую антенну размером в 350 тысяч километров с разрешением 8 микросекунд дуги (8 миллионных долей угловой секунды).
Невероятная точность, с которой не сравнится ни один существующий сегодня прибор.
«Спектр-Р» успешно проработал дольше гарантийных сроков и вышел из строя только в начале 2019 года — аппарат передавал сведения о своем состоянии, но не слушался команд с Земли.
После нескольких месяцев безуспешных попыток восстановить управление миссию признали окончательно завершенной 30 мая 2019 года.
Типы спектров[править | править код]
Два представления : сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.
По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.
Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.
Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), адсорбционные (спектры поглощения), спектр отражения и спектры рассеивания.
Механизм образования спектров
Если вид непрерывных спектров легко объяснялся излучением множества нагретых молекул самой разной энергии, распределение которой соответствует распределению энергии в спектре, то объяснение вида линейчатых и полосатых спектров было получено лишь с построением модели атома Н. Бора.
Согласно модели атома Н. Бора излучение атомов происходит при переходе электронов с одного энергетического уровня на другой. Из-за того, что энергия каждого уровня строго фиксирована, разность этих энергий также будет строго постоянной, в спектре возникнет узкая линия. В рамках модели были объяснены энергии линий спектра, а также получена формула спектра излучения (формула Бальмера)
Рис. 3. Формула Бальмера для атома водорода.
Если излучают не отдельные атомы, а взаимодействующие, то электроны могут переходить между энергетическими уровнями разных атомов, что приводит к появлению большого количества близких линий, сливающихся в широкие полосы полосатого спектра.
Что мы узнали?
Спектры излучения, образуемые нагретыми твердыми или жидкими веществами, имеют непрерывный характер. Атомы газов излучают линейчатые спектры. Если излучающие атомы взаимодействуют друг с другом, то спектры таких атомов становятся полосатыми. Объяснение вида спектров было получено в модели атома Н. Бора.
-
/5
Вопрос 1 из 5
Спектральный анализ
Наибольшее значение из всех видов спектров имею линейные, ведь их структура тесно связана со строением атома. Длины волн такого спектра зависят от свойств атомов исследуемого вещества, а не от способа возбуждения свечения атомов. Атомы каждого химического элемента дают свой индивидуальный спектр из определённого набора длин волн, непохожий на спектры других элементов.
Спектральный анализ – это метод определения химического состава вещества по его спектру. Он позволяет обнаружить любой элемент в составе сложного вещества, даже при незначительной массе. Спектральный анализ требует большой точности.
Сейчас у учёных и исследователей уже составлена таблица спектров, в которой представлены спектры всех атомов. Во время её составления были обнаружены многие химические элементы, например рубидий и цезий. Их названия соответствуют цвету основных линий их спектров: рубидий – тёмно-красный, рубиновый, цезий – небесно-голубой.
Этот метод анализа достаточно прост и универсален, поэтому его используют для контроля состава веществ в металлургии, машиностроении и атомной индустрии. Химический состав руд и минералов также определяется с помощью спектрального анализа.
Спектральный анализ проводится не только по спектрам испускания, но и по спектрам поглощения. Именно так спектральный анализ позволил определить химических состав Солнца и других звёзд. Поверхность Солнца светится очень ярко, что даёт на экранах непрерывный спектр. Атмосфера Солнца избирательно поглощает этот свет, следовательно, на фоне непрерывного спектра появляются линии поглощения.
Однако атмосфера излучает и собственный свет. Таким образом, под спектральным анализом астрофизика подразумевает и определение химического состава небесных тел, и нахождение многих физических характеристик (температуры, давления, скорости движения, магнитной индукции).
Спектры произвольных сигналов: частотное и временное представления[править | править код]
Спектр ядерного магнитного резонанса (1H), полученный методом Фурье-спектроскопии ЯМР. Красным показан исходный временной спектр (интенсивность-время), синим — частотный (интенсивность-частота), полученный Фурье-преобразованием.
В Фурье, занимавшийся теорией распространения тепла в твёрдом теле, опубликовал работу «Аналитическая теория тепла», сыгравшую значительную роль в последующей истории математики. В этой работе он описал метод разделения переменных (метод Фурье), основанный на представлении функций тригонометрическими рядами (ряды Фурье). Фурье также сделал попытку доказать возможность разложения в тригонометрический ряд любой произвольной функции, и, хоть его попытка оказалась неудачна, она, фактически, стала основой современных методов цифровой обработки сигналов.
Оптические спектры, например, Ньютоновский, количественно описываются функцией зависимости интенсивности излучения от его длины волны f(λ)f(\lambda ) или, что эквивалентно, от частоты f(ω)f(\omega ), то есть функция f(ω)f(\omega ) задана на частотной области (frequency domain). Частотное разложение в этом случае выполняется анализатором спектроскопа — призмой или дифракционной решеткой.
В случае акустики или аналоговых электрических сигналов ситуация другая: результатом измерения является функция зависимости интенсивности от времени j(τ)j(\tau ), то есть эта функция задана на временной области (time domain). Но, как известно, звуковой сигнал является суперпозицией звуковых колебаний различных частот, то есть такой сигнал можно представить и в виде «классического» спектра, описываемого f(ω)f(\omega ).
Именно преобразование Фурье однозначно определяет соответствие между j(τ)j(\tau ) и f(ω)f(\omega )
Преобразование Фурье лежит в основе метода Фурье-спектроскопии.
Виды спектров
Все спектры бывают трех типов.
Непрерывные (компактные) спектры — это спектры, которые представляют все длины волн в определенной области. Типичными примерами являются солнечный спектр и спектр лампы-бабочки. В них нет разрывов — на экране спектрографа наблюдаются сплошные зоны разного цвета.
Появление таких переходов объясняется кривой спектральной интенсивности излучения как функции частоты.
Обратите внимание, что частотное распределение энергии (спектральная плотность интенсивности излучения) варьируется от тела к телу. Возьмите тело с очень темной поверхностью (предпочтительно черное тело)
Тело испускает электромагнитное излучение всех частот, но показанная здесь кривая достигает кульминации только на определенных частотах. Остальная часть частотного индекса стремится к нулю или бесконечности, поэтому излучаемая энергия очень мала. При повышении температуры исследуемого тела максимум спектральной плотности излучения смещается в сторону более коротких длин волн.
Когда речь идет об общем состоянии материи, дающем непрерывный (сплошной) спектр, следует упомянуть твердые тела, жидкости и очень сжатые газы. Высокотемпературные существа также дают именно такие спектры.
Поэтому непрерывный спектр сильно зависит от индивидуальных взаимодействий. Для его получения тело должно быть нагрето до высокой температуры. Общий коэффициент излучения тела прямо пропорционален четвертой силе абсолютной температуры.
Спектральные аппараты
Спектральные аппараты – это приборы, которые дают чёткий спектр. Под этим подразумевается хорошее разделение различных волн и не допущение перекрывания каких-либо участков спектра. Основная часть спектральных аппаратов – призма или дифракционная решётка.
Чтобы понять принцип устройства и работы, обратим внимание на схему призменного спектрального аппарата:
При проведении исследования излучение попадает в трубку, один конец которой представлен ширмой с узкой щелью, а другой – собирающей линзой L1. Эта часть спектрального аппарата называется коллиматором, её составляющие находятся на фокусном расстоянии от линзы. Этот фактор обеспечивает падение расходящегося светового пучка параллельно на призму Р.
Выходящие из призмы параллельные пучки имеют разные направления, потому что им соответствуют разные частоты и показатели преломления. Все направления в итоге ведут к линзе L2, на фокусном расстоянии от которой располагается экран (матовое стекло или фотопластинка). Таким образом, фокусировка лучей обеспечит получение множества разных изображений, образующих спектр.
Второе название представленного прибора – спектрограф. Замена второй линзы и экрана на зрительную трубу для визуального наблюдения спектров переименует его в спектроскоп.