Мартенсит: как и почему

Related Posts via Categories

  • Бесшовные трубы ГОСТ 8734-75 – сортамент и все характеристики и особенности
  • Температура плавления и использования нержавеющей стали – что важнее?
  • Плотность нержавеющей стали – отечественные марки и стандарт AISI
  • Марки коррозионностойких сталей – Как улучшается прочность и свойства металла?
  • Легированные конструкционные стали – специальные сплавы для особых случаев
  • Состав нержавеющей стали – какие типы антикоррозийных сплавов существуют
  • Нержавеющая сталь – проведем классификацию без избытка цифр
  • Углеродистая сталь – свойства и сферы применения
  • Низколегированные стали – востребованные современной промышленностью сплавы
  • Термообработка нержавеющей стали – особенности сложного процесса!

Структура – мартенсит

Структура мартенсита образуется при быстром охлаждении в результате перехода решетки твердого раствора у-железа ( аусте-нита) в решетку твердого раствора а-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних, дополнительных напряжений. Мартенсит представляет собой пересыщенный раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.  

Схема бейнитного превращения.  

Структура мартенсита после этих видов превращения различна.  

Структура мартенсита в низко – и среднеуглеродистых сталях имеет форму реек ( реечный мартенсит), вытянутых в одном направлении. В высокоуглеродистых сталях мартенсит образует пластины, которые в плоскости шлифа имеют вид игл.  

Структура мартенсита неустойчива: при нагреве выше 200 С мартенсит стремится перейти в более устойчивую структуру – троостит-сорбит и, наконец, при температуре выше 720 С – в самую устойчивую структуру – перлит.  

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.  

Структура мартенсита в сварном соединении не опасна при сварке и в эксплуатации, если правильно выбран способ сварки, присадочный материал, пе нарушены оптимальные условия технологии изготовления сварного изделия, устранены концентраторы напряжения путем создания плавных переходов от шва к основному металлу или созданы благоприятные условия в сварном соединении, снижающие чувствительность к концентраторам напряжения: применение аустенитных присадок или поверхностная обработка путем наклепа. Сварное соединение ненадежно, если шов выполнен низколегированной проволокой, обеспечивающей мартенситно-ферритную структуру шва, или аустенитной проволокой типа Св – 06Х18Н9Т, Св – 13Х25Н18, Св – 08Х20Н10Г6 с малым запасом аустенитности. Такой шов имеет аустенитно-мартенситную структуру ( высокоуглероднстый мартенсит), обладает низкой пластичностью п ударной вязкостью и не надежен в эксплуатации при повторных статических нагрузках.  

Структура мартенсита образуется в результате перехода решетки твердого раствора у-железа ( аустенита) в решетку твердого раствора сс-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних дополнительных напряжений. Мартенсит представляет собой пересыщенный твердый раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.  

Структура мартенсита характеризуется незначительным размером зерна, часто имеет игольчатое строение.  

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.  

Структура мартенсита бывает разнообразной по виду в зависимости от состава стали и условий закалки.  

Структура мартенсита при этом переходит в троосто-сорбитные формы и далее в аустенит. Температура контакта резца со стружкой при выделении значительного количества тепла настолько высока, что развиваются молекулярные силы слипания ( адгезии), особенно со стороны стружки, и наблюдается оплавление тонких слоев. При этом размягчившиеся поверхностные слои обработанной поверхности и лунки уносятся движущейся по передней поверхности резца стружкой.  

Структура мартенсита, образова1вшегося при температуре выше комнатной, имеет игольчатые кристаллы без признаков внутреннего двойникования. Авторы указанной работы считают, что двойники, присутствующие в пластинах мартенсита, уменьшают число возможных систем скольжения и тем самым увеличивают прочность мартенсита. С последним выводом не согласны И. Н. Бо-гачев с сотрудниками , которые считают, что двойники дополнительно не упрочняют мартенсит сталей переходного класса.  

Зависимость твердости стали от содержания углерода в.| Наверху – наибольшая твердость закаленной стали в зависимости от содержания углерода в ней ( по Бернсу, Муру и Арчеру. внизу – изменение числа элементарных ячеек мартенсита, на долю которых приходится по одному атому углерода в зависимости от содержания его в стали.  

Структура мартенсита отличается тонким блочным строением, что в значительной мере определяет высокое сопротивление закаленной стали пластической деформации.  

Виды мартенсита

1. Пластинчатый или игольчатый (двойниковый) мартенсит, который образуется в углеродистых и легированных сталях при температуре начала мартенситного превращения ниже 200 °C. При этом образовавшиеся мартенситные пластины имеют среднюю линию повышенной травимости, которую называют мидрибом. Мидриб состоит из большого числа двойников по плоскостям {112}, толщина которых составляет 5-30 нм.

2. Реечный или иначе пакетный (дислокационный) мартенсит, характерен для малоуглеродистых, среднеуглеродистых и высоколегированных сталей, для которых температура начала мартенситного превращения выше 300 °C. В этом случае кристаллы мартенсита представляют собой тонкие рейки толщиной 0,2-2 мкм и вытянутые в одном направлении. Сосредоточение параллельных друг другу реек образуют пакеты. Между собой рейки разделены тонкими прослойками остаточного аустенита толщиной 10-20 нм.

Образование того или иного структурного типа мартенсита обусловлено температурой его формирования, которая зависит от состава сплава и других факторов. Значительный интервал между температурой начала и конца мартенситного превращения приводит к наличию в сталях двух типов мартенсита, которые образуются при различной температуре. Низкая прочность аустенита при высокой температуре способствует образованию реечного мартенсита, а с понижением температуры, когда прочность аустенита выше, увеличивается доля пластинчатого мартенсита.

Также существуют низкоуглеродистые мартенситные стали, в которых образуется мартенсит только реечного типа и отсутствует остаточный аустенит. Температура начала мартенситного превращения у таких сталей порядка 400 °C.

Реечный мартенсит обладает повышенной релаксационной способностью.

Это интересно: Медь — температура плавления, физические свойства, сплавы

Превращения в стали. Мартенситное превращение. Мартенсит. Мартенсит структура. Критическая скорость закалки.

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением Feγ в Feα.

При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Превращения в стали. Промежуточное превращение. Бейнит.Превращения в стали. Превращение мартенсита в перлит. Мартенсит отпуска. Троостит отпуска. Сорбит отпуска.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры т.Мн и превращается, называется критической скоростью закалки.

Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке Feα и располагается либо в ценрах тетраэдров, либо в середине длинных ребер (рисунок 1).

Превращения в стали. Превращение аустенита в перлит. Диаграмма изотермического превращения аустенита.Превращения в стали. Изотермическая диаграмма превращения сталей. Превращение перлита в аустетит. Перегрев. Пережог.

Мартенсит – пересыщенный твердый раствор внедрения углерода в Feα.

При образовании мартенсита кубическая решетка Feα сильно искажается, превращаясь в тетрагональную (рисунок 1, позиция а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали (рисунок 1, позиция б).

Влияние углерода на сталь. Влияние углерода на свойства стали.

а — кристаллическая решетка мартенсита; б — влияние содержания углерода на параметры а и с решетки мартенсита

Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

Дефекты кристаллического строения. Точечные дефекты.Дефекты кристаллического строения. Линейные дефекты. Теория дислокаций. Плотность дислокаций.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o, их размеры ограничены участками между первыми пластинами (рисунок 2).

Рисунок 2 — Ориентированность кристаллов мартенсита

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.

3. Очень высокая скорость роста кристалла, до 1000 м/с.

Компоненты железоуглеродистых сплавов. Фазы железоуглеродистых сплавов.

4. Мартенситное превращение происходит только при непрерывном охлаждении.

Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МНи МК зависят от содержания углерода и не зависят от скорости охлаждения Для сталей с содержанием углерода выше 0,6 % МК уходит в область отрицательных температур (рисунок 3).

Мартенситное превращение[править | править код]

Мартенситное превращение при охлаждении происходит не при постоянной температуре, а в определённом интервале температур, при этом превращение начинается не при температуре распада аустенита в равновесных условиях, а несколькими сотнями градусов ниже. Оканчивается превращение при температуре значительно ниже комнатной. Таким образом, в интервале температур мартенситного превращения в структуре стали, наряду с мартенситом, есть и остаточный аустенит. Температуры как начала, так и окончания мартенситного превращения могут сильно зависеть от концентраций легирующих элементов.

При пластической деформации стали при температурах мартенситного превращения количество мартенсита увеличивается. В некоторых случаях также влияет упругая деформация. Возможно превращение аустенита в мартенсит при комнатных температурах под действием пластической деформации.

Кроме железоуглеродистых сплавов, мартенситное превращение наблюдается и в некоторых других материалах, например, сплавах на основе титана (сплавы типа ВТ6, ВТ8, ВТ14), меди (бронзы типа БрАМц 9-3), материалах с памятью формы, оксидных материалах (ZrO2).

Мартенситные точки

Основной характеристикой сплавов при определенном режиме закалке является мартенситные точки.

Температура начала мартенситных превращений обозначается Мн. При достижении температуры охлаждения стали значений Мн начинается мгновенный лавинообразный процесс перекристаллизации стали. Температура Мн определяется для каждой марки стали экспериментальным путем на металлургических предприятиях. Значение Мн снижается от увеличения количества углерода и легирующих элементов в составе стали.

Температура конца мартенситных превращений обозначается Мк. В промежутке значений температур между Мн и Мк происходит бездиффузная перестройка кристаллической решетки стали. При достижении температуры Мк бездиффузная перекристаллизация прекращается. Для высокоуглеродистых легированных сталей она может быть отрицательной.

Практика термической обработки сталей на мартенсит

На крупносерийных и массовых производствах для закалки стальных изделий используют автоматические конвейерные линии, на которых производится полный цикл получения необходимой мартенситной структуры для определенных марок стали.

В инструментальных цехах и на опытных производствах инструмент и детали закаляют вручную путем нагрева инструмента в муфельных печах, в ваннах с маслами, солями или расплавленными металлами. Охлаждение производится в разных средах: воде, масле, воздухе. Параметры температур и процесса закалки разрабатывает технолог согласно техническим нормам и марочникам стали.

Поверхностный нагрев осуществляют в тех случаях, когда нужно повысить прочность наружных слоев изделий при сохранении мягкой сердцевины. Поверхностная закалка производится в генераторах высокой частоты.

В зависимости от требуемой температуры нагрева применяют различные соли или смеси солей; так при высокотемпературных нагревах (1000-1300 градусов), используют расплавленный хлористый барий, при нагревах до 750-950 градусов используют смеси солей хлористого бария, хлористого калия и хлористого натрия. При низкотемпературных нагревах 300-550 градусов используют смеси калиевой и натриевой селитр.

В качестве охлаждающих сред при закалке на мартенсит чаще всего применяют жидкие среды различной охлаждающей способности. Обычно используют воду, а скорость отвода теплоты увеличивают добавлением едкого натра. К более мягким охладителям относятся масла – минеральные и трансформаторные.

Виды закалки на мартенсит

  • Непрерывная, или закалка в одной среде.
  • Закалка в двух средах.
  • Ступенчатая закалка.
  • Обработка холодом.

После нагревания стального изделия до температуры аустенитной фракции, его резко охлаждают либо в воде (самый простой вариант), либо в подогретых маслах, либо на воздухе в зависимости от состава стали. При таком способе охлаждения появляются коробления, а иногда и трещины.

Во избежание рисков используют закалку в двух средах. После нагрева изделие погружают в воду, некоторое время выдерживается, и затем дальнейшее охлаждение до температуры до Мк происходит в более мягкой среде. Этот способ походит для серийных производств.

При ступенчатой схеме охлаждения, сталь, погружают в охлаждающую жидкость, с температурой, превышающей Мп на 60-100 градусов, выдерживают расчетное время, и в дальнейшем охлаждают на спокойном воздухе. Такому виду охлаждения подвергают малогабаритный инструмент из средне- и низколегированных сталей.

К охлаждению в холоде (жидком азоте) обычно прибегают в случаях, когда Мк для марки стали оказывается ниже нуля. Это высоколегированные углеродистые марки, используемые для изготовления мерительного инструмента и элементов подшипников качения.

Как выглядит мартенсит?

Мартенсит – это фаза, которая формируется в сплавах при охлаждении с высокой скоростью. Мартенситное превращение может происходить в сталях и цветных сплавах. В разных сплавах мартенсит выглядит по-разному.

Самый красивый мартенсит формируется в чугуне при быстром охлаждении. Такой мартенсит показан на рис.1. Это зона сплавления стали 45 и чугуна. Температура в зоне контакта была настолько высока, что в ней сформировался аустенит, который потом в результате быстрого охлаждения превратился в мартенсит. В верхней части снимка — мартенсит в чугуне, в нижней — мартенсит в стали 45. Чугун содержит 3,3% углерода, следовательно мартенсит в таком чугуне высокоуглеродистый. В стали 45 углерода меньше и иглы мартенсита мельче (низкоуглеродистый мартенсит). Серые включения — это пластинчатый графит, белый фон — остаточный аустенит.

Рисунок 1. Мартенсит в зоне сплавления стали 45 и чугуна СЧ20.

Вид мартенсита зависит от состава сплава, от режима закалки, от состава травителя, которым выявляли микроструктуру и от некоторых других факторов. На рисунке 2 показан мартенсит в легированном чугуне. Синей стрелкой отмечен ледебурит, красной – иглы мартенсита.

   

Рисунок 2. Иглы мартенсита в хромистом чугуне; 2000х

Мартенсит в чугуне — это не удивительно. Сколько бы ни было углерода в чугуне, выше линии PSK (по диаграмме состояния железо-углерод) всегда есть свободный аустенит (доэвтектический чугун), а также аустенит, который входит в состав ледебурита. При медленном охлаждении при переходе через линию перлитного превращения этот аустенит закономерно превратится в перлит. Если скорость охлаждения равна или выше критической, то аустенит превратится в мартенсит. При увеличении 800х мартенсит в чугуне может выглядеть так:

   

Рисунок 3. Мартенсит в наплавленном слое чугуна; нагрев ТВЧ, закалка в воду.

В принципе, охлаждение в воде совсем не обязательно для образования мартенсита. Главное — задать определенную скорость охлаждения. Охлаждение может произойти отводом тепла вглубь образца, так сказать «на массу». На рис.4 показан чугун (феррито-перлитный, с шаровидным графитом) после воздействия на поверхность лазерного излучения. Верхняя зона, которая подверглась оплавлению при воздействии лазера, имеет структуру литого доэвтектического чугуна. Ниже располагается слой мартенсита (красная стрелка) и остаточного аустенита (синяя стрелка). В этой зоне (нагревшейся до температуры ниже температуры плавления) скорость охлаждения оказалась достаточной для превращения аустенита в мартенсит. Кстати, в мартенсит превратились участки, в которых до обработки был перлит. В этой зоне видны также феррит и графит.

 

Рисунок 4. Структура чугуна после обработки поверхности лазером.

На рисунке 5 показан упрочненный слой, сформировавшийся на поверхности стали после обработки лазером. В слое видны мартенситные иглы (зеленого цвета), а также аустенит (светлый фон).

Рисунок 5. Мартенсит в поверхностном слое стали после лазерного воздействия.

В различных сталях мартенсит выглядит по-разному. Мартенсит в подшипниковой стали столь мелкий, что при исследовании в оптическом микроскопе неразличим.Такой мартенсит называют «скрытоигольчатый мартенсит» (рис.6,а).

   
 а б 

Рисунок 6. а —  Скрытоигольчатый мартенсит в подшипниковой стали, закалка, отпуск; б — Мартенсит в стали 65Г; закалка, отпуск.

Мартенсит в стали 65Г различим при увеличении 400х (рис.6,б). Иглы мартенсита дают возможность оценить размеры бывшего аустенитного зерна. Мартенсит отпуска в различных сталях представлен на рис.7. 

   
 а б 

Рисунок 7. а —  Мартенсит отпуска в стали 12ХН3А; б — сталь 45 , мартенсит и карбиды

Управляя процессом нагрева и охлаждения, можно создать мартенсит в определенном участке детали, не обязательно на поверхности (рис.8 ).

Рисунок 8. Формирование мартенсита на участке структуры (деталь-толкатель).

Мартенсит: как и почему

Самым замечательным свойством стали является ее способность упрочняться до высокого уровня прочности путем простой закалки. Закалка стали обычно происходит при погружении нагретого металла в охлаждающую жидкость, такую как вода, масло или жидкая соль. Для увеличения прочности необходимо, чтобы эта разогретая сталь содержала аустенит, а лучше – была полностью аустенитной. Тогда очень быстрое охлаждение не даст аустениту возможности превратиться в термодинамически «выгодную» структуру феррит + цементит. Вместо нее образуется новая структура, которая называется мартенсит. Эта мартенситная фаза и дает стали очень высокий уровень прочности.

Углерод: много в аустените – мало в феррите

Как известно аустенит имеет гранецентрированную кубическую кристаллическую (ГЦК) структуру, феррит – объемно-центрированную кристаллическую (ОЦК) структуру. Фазовая диаграмма стали показывает, что ГЦК структура – аустенит – будет растворять намного больше углерода, чем ОЦК структура — феррит. При температуре А1 количество углерода, которое может раствориться в аустените – в 38,5 раза (0,77/0,02 = 38,5) больше, чем в феррите.

Дело в том, что атомы углерода намного меньше, чем атомы железа. Растворенные атомы углерода располагаются в промежутках между относительно большими атомами железа. ОЦК структура способна «поглотить» больше атомов углерода, так как некоторые промежутки между атомами в этой структуре значительно больше, чем любые промежутки в ГЦК структуре.

Медленное охлаждение аустенита – феррит плюс цементит

Рисунок 1 показывает схему превращения аустенита стали с содержанием углерода 0,60 % в феррит. Вертикальная линия представляет собой фронт превращения, который движется слева направо. После того, как этот фронт продвинется, например, на 25 мм, в этой области длиной 25 мм содержание углерода должно упасть с 0,6 % до 0,02 %. При медленном охлаждении углерод может успевать двигаться впереди фронта превращения в аустените вдоль направления, которое показано штриховой стрелкой, за счет механизма диффузии.

Рисунок 1 – Схема продвижения фронта превращения аустенита в феррит

Быстрое охлаждение аустенита – мартенсит

Однако, если это превращение вынуждено происходить очень быстро путем закалки, уже не будет времени для диффузионного движения атомов углерода. Поэтому часть их – или они все –  останутся в феррите. Это чрезмерное содержание углерода в феррите приводит к резкому искажению его ОЦК структуры – в результате возникает мартенситная структура.

Атомная решетка: из феррита в мартенсит

На рисунке 2 показаны рядом атомная ячейка ОЦК феррита и искаженная атомная ячейка мартенсита. Атомная ячейка мартенсита похожа на ОЦК ячейку феррита в том, что она тоже имеет атом в центре и по атому в каждом из восьми углов. Однако эта атомная ячейка уже не является кубом. Одна из ее сторон, которую называют периодом решетки с или гранью с (см. рисунок 2), длиннее, чем две другие, которые называют периодами а или гранями а. Эта кристаллическая структура называется объемноцентрированной тетрагональной (ОЦТ).

Рисунок 2 – Сравнение кристаллических структур феррита и мартенсита

Больше углерода – выше твердость

Рисунок 3 показывает, как с увеличением в мартенсите растворенного углерода его грань с становится все больше и больше по сравнению с гранью а. Повышенное содержание углерода в мартенсите достигается закалкой аустенита с более высоким содержанием углерода. На графике на рисунка 3 видно, что с увеличением содержания углерода искажение атомной решетки от кубической – грань с становится все больше по сравнению с гранью а. Это происходит из-за внедренных в ОЦТ решетку мартенсита атомов углерода.

Рисунок 3 – Размеры граней а и с объемно-центрированной ячейки мартенсита(1 нм = 1000 мкм)

Прочность и твердость мартенсита с увеличением в нем содержания углерода возрастает очень сильно, как это видно из рисунка 4.

Рисунок 4 – Твердость по Роквеллу свежезакаленного мартенситав зависимости от содержания углерода

Понять, почему с увеличением содержания углерода прочность мартенсита возрастает, помогает следующая интерпретация. Удобно представить себе, что химические связи, которые держат вместе атомы железа, являются пружинами. С увеличение содержания углерода эти пружины растягиваются, чтобы поместить в решетке дополнительные атомы углерода. А чтобы растянуть эти растянутые пружины дальше – деформировать мартенсит – требуется все больше и больше усилий.

Образование

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. Другие процессы диффузионны, то есть атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объём приобретает перлитную или феррито-перлитную структуру. Мартенситное превращение бездиффузионно (сдвиговое превращение), атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения порядка тысячи метров в секунду.

Это интересно: Нержавеющие стали AISI 316, AISI 316l — аналоги, характеристики

Применение мартенситных марок стали

В мартенситные стали добавляют легирующие элементы, чтобы получить нужные свойства сплавов: прочность, износостойкость, хладо-жаропрочность, коррозийную стойкость. В одной марке легированной стали может быть до 7 легирующих элементов. Стали легируют никелем, хромом, азотом, вольфрамом, бериллием, ванадием, кремнием, молибденом, медью, бором.

Обычно в обозначении стали зашифрованы легирующие добавки и их количество (38ХН3МФА), некоторые экспериментальные шифруются буквой Э. В этом случае буква не отражает состава стали – ЭИ, ЭП3. Иногда стали, предназначенные для изготовления выпускных авиационных и автомобильных клапанов, называют сокращенно – сильхромы.

Легированные мартенситные стали способны противостоять агрессивным среда: кислотам, щелочам, солям, агрессивным газам. По применению мартенситные стали бывают коррозионностойкие, жаростойкие, жаропрочные и стали специального назначения.

Коррозионностойкие марки сталей (15Х28, 20Х13, 12Х18Н9) применяют на опытных производствах, в химической промышленности.

Жаростойкие марки сталей (ХН60Ю, 12Х25Н16Г7АР, (15Х6СЮ) используют для изготовления деталей, которые работают под умеренной нагрузкой при температурах до 1000 градусов.

Изделия из жаропрочных марок сталей (15Х6СЮ, 08Х13, 14Х17Н2) могут работать под нагрузкой весьма длительный и длительный период при высоких температурах.

К специальным сталям можно отнести стали, из которых катают броневой сэндвич. Отдельное место занимает сталь Гадфильда (1,1% углерода, 13% магния). При работе в условиях высоких давлений происходит самопроизвольная пластическая деформация и соответственно увеличивается степень ее прочности. Уникальные механические свойства пока не до конца изучены.

Магнитные свойства мартенситной стали

У мартенситной структуры кристаллической решетки стали ярко выражены магнитные свойства. Мартенсит – ферромагнетик в чистом виде. Однако выдержать идеальный химический состав сложно. Углеродистые мартенситные стали, легированные молибденом, кобальтом и хромом (ЕХ9К15М2), кобальтом и хромом (ЕХ5К6), хромом (ЕХ3) можно отнести магнитотвердыми материалами.

Легирование кобальтом наиболее эффективно с точки зрения магнетизма – у атомов кобальта присутствует магнитный момент, таким образом, остаточная индукция мартенсита возрастает. Низкая цена и легкость механической и термической обработки дает возможность применения мартенситных сталей в магнитных системах в качестве переключателей для изменения направления при подаче управляющих сигналов.

Свариваемость мартенситных сталей

Технологии сварки мартенситных сплавов усложняются повышенной хрупкостью металла после закалки. Эти типы стали варят после предварительного нагрева примерно от 200 до 450 градусов, температура окружающей среды не должна быть отрицательной. Обычно детали из стали мартенситной группы сваривают методами ручной дуговой сварки электродами, покрытыми специальными составами. Иногда используют и другие виды сварки: аргонодуговые, электрошлаковые, под флюсом.

Мартенсит. Структура мартенсита

Мартенсит

(от имени немецкого металлурга Адольфа Мартенса; Adolf Martens, 1850-1914) — микроструктура игольчатого вида, наблюдаемая в некоторых закалённых металлических сплавах и чистых металлах, которым свойственны полиморфные превращения.Мартенсит – основная структурная составляющая закалённой стали; представляет собой перенасыщенный твёрдый раствор углерода в α-железе такой же концентрации, как и у исходного аустенита. Мартенситной структуре соответствует наиболее высокая твёрдость стали.

С превращением мартенсита

при нагреве и охлаждении связан «эффект памяти» металлов и сплавов: в своё время Г.В. Курдюмов и Л.Г. Хандрос (1949 г.) обнаружили явление, названное ими«термоупругий мартенсит» , заключающееся в том, что локальная деформация, возникшая при прямом превращении, полностью исчезает при обратном. Этот эффект оказался практически важным, и, используя его, был создан новый класс сплавов, обладающих так называемым «эффектом памяти формы». Если сплав продеформировать при температуре ниже точки Мн, т.е. в мартенситном состоянии, а затем нагреть выше точки Ан (т.е. вызвать обратное превращение по мартенситному механизму), то сплав примет прежнюю до деформации форму. ИЦМ(www.modificator.ru)Мартенсит

не представлен на диаграмме состояния железо-углерод, потому что это метастабильная фаза.

Для мартенсита

характерна особая микроструктура.Кристаллы мартенсита представляют собой пластины, расположенные параллельно или пересекающиеся под определёнными углами (60 и 120 градусов). В плоскости шлифа эти пластины имеют вид иглы, поэтому для описания вида микроструктуры мартенсита вполне применим термин «игольчатость» — «крупноигольчатый мартенсит «, «мелкоигольчатый мартенсит » и т.д.

Различают атермический мартенсит

, образовавшийся при охлаждении, иизотермический мартенсит , образующийся при постоянной температуре.

ИЦМ(www.modificator.ru)

Итак, в стали к образованию объёмноцентрированной кубической фазы — мартенсита

— приводит резкая закалка аустенита (γ-железа, имеющего ГЦК-решётку). В присутствии углерода мартенсит имеет объёмноцентрированную тетрагональную решётку (ОЦТ), степень тетрагональности которой зависит от содержания углерода.Образование мартенсита происходит в результате бездиффузного (мартенситного) превращения. Вопросы перераспределения атомов углерода врешётке мартенсита стали рассмотрены в .

В работе рассмотрены особенности тонкого строения мартенсита

, определяющие его свойства, основные способы повышения прочности и сопротивления хрупкому разрушению сталей соструктурой мартенсита . Описаны изменения свойств стали в связи с получением особо мелкого зерна аустенита при термомеханической обработке, деформационномстарении мартенсита , в том числе с использованием гидроэкструзии. Изложены общие сведения о мартенситно стареющих сталях, отпуске под нагрузкой, упрочнении метастабильных аустенитных сталей. Рассмотрены физические причины упрочнениясталей со структурой мартенсита .

А в статье излагаются результаты электронномикроскопического исследования структурных изменений при старении мартенсита

трёхкомпонентных и более сложных сплавов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: