Рентгеновское излучение

Применение рентгеновских лучей.

Наиболее широкое применение рентгеновские лучи нашли в медицине для рентгенодиагностики и рентгенотерапии

Важное значение для многих отраслей техники имеет рентгеновская дефектоскопия, например для обнаружения внутренних пороков отливок (раковин, включений шлака), трещин в рельсах, дефектов сварных швов

Рентгеновский структурный анализ позволяет установить пространственное расположение атомов в кристаллической решётке минералов и соединений, в неорганических и органических молекулах. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ (см. Дебая — Шеррера метод). Многочисленными применениями рентгеновских лучей для изучения свойств твёрдых тел занимается рентгенография материалов.

Рентгеновская микроскопия позволяет, например, получить изображение клетки, микроорганизма, увидеть их внутреннее строение. Рентгеновская спектроскопия по рентгеновским спектрам изучает распределение плотности электронных состояний по энергиям в различных веществах, исследует природу химической связи, находит эффективный заряд ионов в твёрдых телах и молекулах. Спектральный анализ рентгеновский по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава материалов на металлургических и цементных заводах, обогатительных фабриках. При автоматизации этих предприятий применяются в качестве датчиков состава вещества рентгеновские спектрометры и квантометры (см. Спектральная аппаратура рентгеновская).

Рентгеновские лучи, приходящие из космоса, несут информацию о химическом составе космических тел и о физических процессах, происходящих в космосе. Исследованием космических рентгеновских лучей занимается рентгеновская астрономия. Мощные рентгеновские лучи используют в радиационной химии для стимулирования некоторых реакций, полимеризации материалов, крекинга органических веществ. Рентгеновские лучи применяют также для обнаружения старинной живописи, скрытой под слоем поздней росписи, в пищевой промышленности для выявления инородных предметов, случайно попавших в пищевые продукты, в криминалистике, археологии и др.

Открытие Рентгена

В 1894 году Рентген обратил внимание на результаты экспериментов к тому времени покойного Генриха Герца, открывшего электромагнитные лучи. Немецкий физик выяснил, что катодные лучи проникают сквозь тонкие металлические листы

Тогда вместе с ассистентом Герц смастерил разрядную трубку с отверстием, герметично закрытым фольгой. Внутри трубки был вакуум: катодные лучи могли хорошо генерироваться. Чтобы их увидеть, Герц использовал флюоресцирующие вещества.

Именно с такой катодно-лучевой трубкой и флюоресцирующими веществами Рентген экспериментировал в своей лаборатории 8 ноября в 1895 году: он проверял, могут ли катодные лучи проходить через стекло. Из-за проблем со зрением ученый зашторивал комнату. Трубка тоже была закрыта темным картоном: так флюоресценция лучше видна. Рентген пустил ток и увидел свечение на листке бумаги, который лежал на столе. Ученый подошел ближе и понял, что на бумаге светится покрытие из цианоплатинида бария. При остановке тока, свечение тоже прекращалось.

Шесть недель Рентген посвятил исследованиям. Он пытался преградить путь лучу непонятного происхождения тетрадями, книгами, но ничего не выходило — свечение появлялось снова. Тогда ученый подставил руку и понял, что может разглядеть проекцию своих костей: таинственные лучи проникали сквозь материю без отражения и преломления. Дальнейшие эксперименты он продолжил с фотопластинками. Рентген выяснил, что лучи могут проходить сквозь человеческую плоть, но не через материалы высокой плотности, такие как кость или свинец. Ученый назвал открытие Х-лучами, поскольку затруднялся точно определить природу явления.

Вреден ли рентген?

Рентгеновские лучи являются прекрасным дополнением к миру медицины: они позволяют врачам заглянуть вовнутрь пациента без каких-либо операций вообще. Гораздо легче и безопаснее смотреть на сломанную кость с помощью рентген лучей, чем пользоваться инвазивным способом.

Но вреден ли рентген? В первые дни рентгеновской науки многие врачи подвергали пациентов и самих себя воздействию лучей в течение длительных периодов времени. В конце концов, у врачей и пациентов начала развиваться лучевая болезнь, и медицинское сообщество знало, что что-то не так.

Электрический заряд иона может привести к неестественным химическим реакциям внутри клеток. Помимо прочего, заряд может разорвать цепи ДНК. Клетка со сломанной нитью ДНК либо умрет, либо ДНК начнет мутацию. Если погибнет много клеток, то в организме могут развиться различные заболевания. Если ДНК мутирует, клетка может стать раковой и этот рак может распространяться. Если мутация происходит в сперме или яйцеклетке, это может привести к врожденным дефектам. Из-за всех этих рисков, врачи используют рентгеновские снимки с учетом определенных норм.

Даже при таких рисках рентгеновское сканирование по-прежнему является более безопасным вариантом, чем хирургическое вмешательство. Рентгеновские аппараты являются бесценным инструментом в медицине, а также активом в безопасности и научных исследованиях. Они действительно одни из самых полезных и важных изобретений.

Как детектируют рентгеновское излучение

На протяжении длительного времени для детектирования и измерения рентгеновского излучения использовался тонкий слой люминофора или фотоэмульсии, нанесенный на поверхность стеклянной пластинки или прозрачной полимерной пленки. Первый под действием рентгеновского излучения светился в оптическом диапазоне спектра, а у пленки под действием химической реакции менялась оптическая прозрачность покрытия.

В настоящее время для регистрации рентгеновского излучения чаще всего применяют электронные детекторы — приборы, вырабатывающие электрический импульс при поглощении кванта излучения в чувствительном объеме детектора. Они отличаются принципом преобразования энергии поглощенного излучения в электрические сигналы. Рентгеновские детекторы с электронной регистрацией можно разделить на ионизационные, действие которых основано на ионизации вещества, и радиолюминесцентные, в том числе сцинтилляционные, использующие люминесценцию вещества под действием ионизирующего излучения. Ионизационные детекторы, в свою очередь, делятся на газонаполненные и полупроводниковые в зависимости от детектирующей среды. 

Основными типами газонаполненных детекторов являются ионизационные камеры, счетчики Гейгера (счетчики Гейгера — Мюллера) и пропорциональные газоразрядные счетчики. Кванты излучения, попадающие в рабочую среду счетчика, вызывают ионизацию газа и протекание тока, который и регистрируется. В полупроводниковом детекторе под действием квантов излучения образуются электронно-дырочные пары, которые также делают возможным протекание электрического тока через тело детектора.

Основной компонент сцинтилляционных счетчиков вакуумного прибора — это фотоэлектронный умножитель (ФЭУ), использующий фотоэффект для конверсии излучения в поток заряженных частиц и явление вторичной эмиссии электронов для усиления тока образующихся заряженных частиц. ФЭУ имеет фотокатод и систему последовательных ускоряющих электродов — динодов, при ударе о которые происходит размножение ускоренных электронов.

Вторичный электронный умножитель — открытый вакуумный прибор (работает только в условиях вакуума), в котором на входе излучение рентгеновского диапазона преобразуется в поток первичных электронов и затем усиливается за счет вторичной эмиссии электронов при их распространении в канале умножителя. По этому же принципу работают микроканальные пластины, представляющие собой огромное количество отдельных микроскопических каналов, пронизывающих пластинчатый детектор. Они могут дополнительно обеспечить пространственное разрешение и формирование оптического изображения поперечного сечения потока падающего на детектор рентгеновского излучения путем бомбардировки выходящим потоком электронов полупрозрачного экрана с нанесенным на него люминофором.

Основные свойства рентгеновского излучения

X-лучи обладают уникальной комбинацией физических свойств, часть из которых присуща другим спектрам электромагнитных волн.

  • Исходящие из фокуса рентгеновской трубки лучи движутся по прямолинейной траектории.
  • Оказывают фотохимическое воздействие – способны разлагать соединения серебра и галогенов. Явление легло в основу создания рентгеноскопических снимков органов человека и животных, преимущественно костей.
  • Нейтральны для электромагнитных полей – не отклоняются ЭМ полями.
  • В вакууме движутся со скоростью, равной скорости света (c).
  • Невидимы для человеческого глаза и органов зрения практически всех живых организмов.
  • Обладают ионизирующим воздействием – при высокой концентрации превращают воздух в проводник электрического тока.
  • Световозбуждающее действие – X-лучи становятся видимыми вследствие взаимодействия с рядом веществ, например, тетрацианоплатинатом (II) бария. Явление стало основой рентгеноскопии.
  • Всепроникающая способность – с лёгкостью проникают в неплотную материю, в том числе мягкие ткани организма. Чем плотнее вещество, тех хуже рентгеновские лучи проникают в него.
  • Активное биологическое воздействие – ионизирует живые ткани, могут вызывать лучевые ожоги, болезнь, злокачественные образования. Является мутагенным фактором для клеточных мембран и ДНК в больших дозах, в малых – активизирует метаболизм.
  • Взаимодействие со слабосвязанными и свободными электронами при высоких энергиях.
  • Являются частью естественного радиоактивного фона.
  • Для X-излучения невозможно создать линзу.
  • Почти не отражаются при падении на поверхность под прямым углом.

Интенсивность рентгеновских лучей снижается пропорционально увеличению расстояния от источника в квадрате.

Кем был Вильгельм Рентген

Вильгельм Рентген родился 27 марта 1845 года в небольшом городке Леннеп, в Германии. Когда ему было три года, его семья переехала в Нидерланды. Вильгельм с детства проявлял изобретательские способности. В 1862 году его несправедливо исключили из университета в Утрехте: за карикатуру на учителя, сделанную другим студентом. Тогда Рентген поступил в технологический институт в Цюрихе на факультет машиностроения. Он получил докторскую степень в 1869 году и опубликовал первую статью об удельной температуре газов. Молодой ученый также работал над другими темами:

  • теплопроводность кристаллов,
  • электрические характеристики кварца,
  • влияние давления на преломление жидкостей,
  • функции изменения температуры,
  • сжимаемость воды и других жидкостей и др.

Рентген стал профессором физики в Страсбургском университете в 1876-м, а также заведующим кафедрой физики в Гиссенском университете. В 1888 году он перешел в Вюрцбургский университет. Его эксперименты были посвящены световым явлениям и другим излучениям, вызванным электрическим током в катодных трубках. В 1900 году ученый поселился в Германии и работал заведующим кафедрой физики в Мюнхенском университете.

В это же время Рентген женился на Анне Берте Людвиг. Оба увлекались фотографией. Именно это хобби привело ученого к Нобелевской премии.

Рентгеновская астрономия

На Земле мы довольно редко сталкиваемся с рентгеновским излучением, однако оно достаточно часто обнаруживается в космосе. Там оно возникает естественным путем в силу активности многих космических объектов. Благодаря этому стала возможна рентгеновская астрономия. Энергия рентгеновских фотонов гораздо больше, нежели оптических, поэтому в рентгеновском диапазоне излучает вещество, нагретое до чрезвычайно высоких температур. Источниками рентгеновского излучения являются черные дыры, нейтронные звезды, квазары. Благодаря рентгеновской астрономии появилась возможность отличать черные дыры от нейтронных звезд, были обнаружены пузыри Ферми, удалось запечатлеть процесс разрушения обычной звезды, приблизившейся к черной дыре.


Один из первых рентгеновских источников на небе — Лебедь Х-1 — был открыт в 1964 году, и сегодня большинство ученых уверены, что это черная дыра массой около 15 солнечных масс // NASA

Эти космические источники рентгеновского излучения не являются для нас заметной частью естественного радиационного фона и поэтому никак не угрожают людям. Исключением может стать только такой источник жесткого электромагнитного излучения, как вспышка сверхновой звезды, произошедшая достаточно близко от Солнечной системы.

История открытия

Файл:X-ray by Wilhelm Röntgen of Albert von Kölliker’s hand — 18960123-02.jpg

Сделанная В. К. Рентгеном фотография (рентгенограмма) руки Альберта фон Кёликера.

Рентгеновское излучение было открыто Вильгельмом Конрадом Рентгеном. Изучая экспериментально катодные лучи, 8 ноября 1895 года он заметил, что находившийся вблизи катодно-лучевой трубки картон, покрытый платиносинеродистым барием, начинает светиться в тёмной комнате. В течение нескольких следующих недель он изучил все основные свойства вновь открытого излучения, названного им X-лучами («икс-лучами»). 22 декабря 1895 года Рентген сделал первое публичное сообщение о своём открытии в Физическом институте Вюрцбургского университета. 28 декабря 1895 года в журнале Вюрцбургского физико-медицинского общества была опубликована статья Рентгена под названием «О новом типе лучей».

Но ещё за 8 лет до этого — в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей[источник не указан 3751 день] и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.

Катодно-лучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса[источник не указан 5020 дней] и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо — при наблюдении флюоресценции, возникающей при работе катодно-лучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей. Впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки Альберта фон Кёликера, которую он опубликовал в своей статье (см. изображение справа)

За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году в России, впервые было употреблено название «рентгеновские лучи»

В других странах используется предпочитаемое Рентгеном название — X-лучи, хотя словосочетания, аналогичные русскому, (англ. Roentgen rays и т. п.) также употребляются. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Как получается снимок?

Принцип получения изображения при помощи рентгеновских лучей построен на особенностях их поглощения различными тканями тела.

Рентгеновские лучи, испускаемые трубкой, проходят сквозь тело человека и проецируются на специальной пленке – почти как в фотоаппарате.

Кальций, содержащийся в
скелета, поглощает больше всего рентгеновских лучей. Поэтому на снимке, полученном при исследовании, кости будут самыми яркими – белыми, так как на пленку в этой области попадет меньше всего лучей.

Жир, жидкости тела, мышцы и соединительная ткань поглощают меньше лучей – на снимке они отображаются оттенками серого.

Что можно диагностировать при помощи рентгена?

  • Трещины и
    костей
  • костей, легких и других тканей
  • Остеомиелит
  • Состояние легких
  • Дегенеративные заболевания костей, например,
  • Инородные тела различных тканей

Как проводится рентгеновское исследование?

Исследование проводится в специальном кабинете, в котором установлен рентгеновский аппарат, или в любом другом помещении с использованием портативной или передвижной рентгеновской установки.

Во время получения рентгеновского снимка пациент может лежать на столе или стоять в различных позах перед рентгеновским аппаратом – в зависимости от того, какая область тела исследуется.

Что происходит во время рентгеновского исследования?

Перед рентгеновским исследованием вас попросят снять одежду и все ювелирные украшения: эти предметы искажают получаемое изображение.

В зависимости от того, какой участок тела будет исследоваться, вам придется принять определенную позу. Не все они могут быть удобны – но от вашей неподвижности зависит качество снимка.

Сам снимок делается в течение секунды. Воздействие рентгеновских лучей абсолютно безболезненно.

При необходимости также делается несколько разных снимков одного участка тела – в разных проекциях.

Затем полученные изображения интерпретируются врачом.

Возможные риски

В современном рентгеновском аппарате используются очень низкие уровни рентгеновского излучения. Специалисты говорят, что доза облучения во время обследования сравнима с той, что получает пассажир обычного авиалайнера во время
.

Это значит, что диагностические преимущества метода значительно перевешивают тот ущерб, которое излучение успевает причинить клеткам организма.

Важно! Рентгеновское исследование противопоказано маленьким детям и беременным женщинам. Оно назначается только в том случае, если этот диагностический метод жизненно необходим.. Самое важное

Самое важное

Рентгенографическое исследование позволяет получить двумерное изображение тела, на котором самыми светлыми участками будут кости, а темными – полости, содержащие воздух.

Этот вид диагностики позволяет определить повреждения и заболевания костей, а также наличие опухолей и заболеваний легких.

Информация с сайта:

Раннее применение рентгена

В течение нескольких лет рентгеновские снимки начали активно использовать для проведения более точных операций. Уже спустя 14 дней после их открытия Фридрих Отто Валкхофф сделал первую стоматологическую рентгенограмму. А вслед за этим они вместе с Фрицем Гизелем основали первую в мире стоматологическую рентгенологическую лабораторию.

К 1900 году, через 5 лет после открытия, использование рентгена при диагностике считалось неотъемлемой частью медицинской практики. 
Показательной с точки зрения распространения технологий, основанных на рентгеновском излучении, можно считать статистику, собранную старейшим госпиталем в Пенсильвании. Согласно ей, в 1900 году только около 1–2% пациентов получали помощь с помощью рентгена, в то время как к 1925 году их было уже 25%.

X-лучи в то время использовались весьма необычным образом. К примеру, с их помощью предоставляли услуги по удалению волос. Долгое время этот способ считался более предпочтительным в сравнении с более болезненными — щипцами или воском. Кроме того, рентгеновское излучение использовалось в аппаратах для примерки обуви — примерочных рентгеноскопах (педоскопах). Это были рентгеновские аппараты со специальной выемкой для ступней, а также с окошками, через которые клиент и продавцы могли оценить, как села обувь.


Флюороскоп для обуви // wikipedia.org

Раннее использование рентгеновского изучения с точки зрения современных представлений о безопасности вызывает много вопросов. Проблема была в том, что на момент открытия икс-лучей практически ничего не было известно о радиации и ее последствиях, отчего первопроходцы, пользовавшиеся новым изобретением, сталкивались с его вредоносным эффектом на своем опыте.Негативные последствия повышенного облучения стали массовым явлением на рубеже XIX–XX веков, и люди начали постепенно приходить к осознанию опасности бездумного использования рентгеновского излучения.

Рентген позволяет узнать структуру вещества

Рентгеновская кристаллография — это научное направление, связанное с выявлением структуры вещества на атомном и молекулярном уровнях. Отличительная черта кристаллических тел — многократное упорядоченное повторение в пространственной структуре одних и тех же элементов (ячеек), состоящих из определенного набора атомов, молекул или ионов.

Основной метод исследований заключается в воздействии на кристаллический образец узкого пучка рентгеновских лучей с помощью рентгеновской камеры. Полученная фотография показывает картину дифрагированных рентгеновских лучей, проходящих через кристалл, по которой ученые могут затем визуально отобразить его пространственную структуру, называемую кристаллической решеткой. Различные способы осуществления данного метода получили название рентгеноструктурного анализа.


Фотография дифракционной картины ДНК в ее так называемой B-конфигурации

Некоторые молекулярные биологи предсказывают, что в визуализации наиболее крупных и сложных молекул рентгеновскую кристаллографию может заменить новый метод — криогенная электронная микроскопия.

Одним из новейших инструментов химического анализа стал пленочный сканер Хендерсона, который он использовал в своей новаторской работе в области криогенной электронной микроскопии. Однако этот метод пока остается довольно дорогим и поэтому вряд ли в ближайшее время полностью вытеснит рентгеновскую кристаллографию.

Сравнительно новое направление исследований и технических приложений, связанное с использованием рентгеновских лучей, — рентгеновская микроскопия. Она предназначена для получения увеличенного изображения исследуемого объекта в реальном пространстве в двух или трех измерениях с использованием элементов фокусирующей оптики. 

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности, выяснилось, что их хорошо отражает алмаз.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = Ie-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флуоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

  • Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивают светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.
  • Фотографический эффект. Рентгеновские лучи, также, как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30—100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.
  • В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n-переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.
  • Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Немного истории

Рентгеновское излучение открыл в 1895 году выдающийся немецкий физик Вильгельм Кондрад Рентген, который впоследствии стал первым лауреатом Нобелевской премии по физике.

Именно он получил первый рентгеновский снимок – это была рука его жены с обручальным кольцом. В честь ученого и был назван новый тип излучения.

Прототип рентгеновской трубки, которая сейчас используется во всех современных рентгеновских аппаратах, изобрел американский физик Уильям Кулидж.

Как это устроено: УЗИ

УЗИ используют для обследования сердца, сосудов, пищеварительной системы и органов малого таза.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: