Алканы

Электролиз солей карбоновых кислот (электролиз по Кольбе)

Это электролиз водных растворов солей карбоновых кислот.

В общем виде:

2R–COONa + 2H2O → H2 + 2NaOH + 2CO2 + R–R

В водном растворе ацетат натрия практически полностью диссоциирует:

CH3COONa → CH3COO– + Na+

При этом на катод притягиваются катионы натрия Na+ и молекулы воды H2O.

Разряжаться на катоде будут молекулы воды:

Kатод(-):     2H2O + 2e = H2 + 2OH–

 На аноде окисляются ацетат-ионы, а именно, атом углерода карбоксильной группы.

При этом от карбоксильной группы отрывается углекислый газ и остаются метильные радикалы, которые образуют газообразный этан:

Aнод(+):    2CH3COO– – 2e = 2CO2 + CH3–CH3

Суммарное уравнение электролиза водного раствора ацетата натрия:

2CH3COONa + 2H2O = H2 + 2NaOH + 2CO2 + CH3–CH3

Свойства

Алканы образуют однородный класс веществ, и знания свойств некоторых представителей достаточно, чтобы предсказать поведение других. Это относится как к внутри- и межмолекулярным взаимодействиям алканов, которые влияют на температуры плавления и кипения, так и к рассмотрению их синтезов и реакций.

Для циклоалканов существует ряд особенностей, которые возникают, среди прочего, из-за кольцевой деформации, имеющей место в большинстве молекул (за важным исключением циклогексана), которая оказывает длительное влияние на реакционную способность. 

Физические свойства

Молекулярная структура, особенно размер поверхности молекул, определяет точку кипения связанного вещества: чем меньше площадь, тем ниже точка кипения, поскольку силы Ван-дер-Ваальса, действующие между молекулами, меньше. Уменьшение поверхности может быть достигнуто за счет разветвления или кольцевой структуры. На практике это означает, что алканы с более высоким содержанием углерода обычно имеют более высокую температуру кипения, чем алканы с более низким содержанием углерода. Разветвленные алканы имеют более низкую температуру кипения, чем неразветвленные. Из пяти атомов углерода неразветвленные алканы при нормальных условиях являются жидкими, из семнадцати — твердыми. 

За одним исключением в случае пропана, температура плавления алканов также увеличивается с увеличением числа атомов углерода. Однако в случае высших алканов, точки плавления повышаются медленнее, чем точки кипения. Кроме того, температура плавления алканов с нечетным числом атомов углерода до алканов с четным числом атомов углерода увеличивается больше. Причина этого явления — большая плотность упаковки алканов с четным числом атомов углерода. Температура плавления разветвленных алканов может быть выше или ниже соответствующего значения для неразветвленных алканов. Чем крупнее молекула, тем труднее плотно упаковать соответствующее вещество и тем ниже температура плавления. Напротив, существует ряд изоалканов. которые имеют гораздо более компактную структуру, чем соответствующие н-алканы.

Алканы не проводят электричество. По этой причине они не образуют водородных связей и очень трудно растворяются в полярных растворителях, таких как вода. Поскольку водородные связи между отдельными молекулами воды в непосредственной близости от точки алкана от нее и, следовательно, не изотропно выровнены, то есть не указывают равномерно во всех направлениях, смесь обоих веществ приведет к увеличению молекулярного порядка. Так как это запрещено вторым законом термодинамики, при попытке смешивания всегда образуются два отдельных слоя. Поэтому алканы называют водоотталкивающими или гидрофобными. С другой стороны, их растворимость в неполярных растворителях хорошая (липофильность). Например, они могут быть смешаны друг с другом в любом соотношении при одинаковом физическом состоянии.

Химические свойства

В общем, алканы показывают низкую реакционную способность, потому что их связи CH и CC относительно стабильны и их нелегко разорвать. В отличие от всех других органических соединений они не имеют функциональных групп. Они очень плохо реагируют с ионными или более полярными веществами. 

Однако алканы вступают в окислительно-восстановительные реакции, в частности, с кислородом и галогенами, поскольку их атомы углерода находятся в сильно восстановленном состоянии. В случае метана достигается даже минимально возможный уровень окисления -IV. 

Радикалы, то есть молекулы с неспаренными электронами, играют важную роль в большинстве реакций, включая так называемые крекинг и риформинг, в которых длинноцепочечные алканы превращаются в короткоцепочечные, а неразветвленные — в разветвленные.

В случае сильно разветвленных молекул валентный угол должен отклоняться от оптимального значения, что вызвано тем фактом, что в противном случае алкильные группы на разных атомах углерода сблизились бы. Результирующее «напряжение», известное как стерическое натяжение, делает эти молекулы гораздо более реактивными.

Алканы. Циклоалканы

Алканы

Углеводороды общей формулы – CnH2n+2. Гомологический ряд алканов.

Физические свойства алканов – см. учебник.

Способы получения алканов
Источники промышленного получения алканов – природный газ, нефть.Синтетические способы (применяются, в основном, в лабораторных условиях для получения сложных алканов):1. Гидрирование алкенов и алкинов

2. Восстановление галогеналканов

3. Реакция Дюма

4. Реакция Вюрца

5. Реакция Кольбе

   Химическая реакция – это, как правило, многостадийный процесс. Она начинается с разрыва связей в исходных соединениях, после чего образуются новые связи и новые соединения. В ходе реакции образуются неустойчивые промежуточные частицы. Последовательность всех стадий называется механизмом реакции.Активные частицы – это частицы, обладающие высокой химической активностью, они инициируют реакцию.

Электрофил – электронодефицитная частица, атакует в места повышенной электронной плотности.
Нуклеофил – электроноизбыточная частица, атакует в места пониженной электронной плотности.Радикал – электронейтральная частица, атакует неполярные и малополярные связи.

Активные частицы могут образоваться в результате разрыва химической связи. Малополярные связи разрываются гомолитически, и образуются два радикала; полярные связи разрываются гетеролитически, и образуются нуклеофил и электрофил:

Химические свойства алканов
Алканы – наиболее инертные в химическом отношении вещества.
Связи С-С и С-Н малополярны и устойчивы к атаке электрофилов и нуклеофилов, они разрываются под действием радикалов.

1. Реакции радикального замещения (SR).
а) галогенирование:

механизм реакции – цепной радикальный:

Скорость реакции у первичного, вторичного и третичного углеродов различна: она увеличивается в ряду: С(1) < С(2) < С(3) (см. предыдущую схему).
Причем в этом отношении хлорирование мало избирательно, бромирование гораздо более избирательно из-за меньшей активности радикала Br.

б) нитрование: в паровой фазе при 400-500о;

жидкофазное – при 110-140о (Коновалов)

2. Окисление:

Алканы – одни из самых трудно окисляемых веществ. При комнатной температуре на них не действуют даже сильные окислители.
При горении алканы превращаются в СО2 и Н2О.
Регулируемое окисление кислородом при 200о и 90 атм. протекает в жидкой фазе с расщеплением С-С-связей и образованием смеси карбоновых кислот.

Например, промышленный способ получения уксусной кислоты:

3. Термическое расщепление и крекинг:

Крекинг очень широко применяется в переработке нефти для получения высокооктанового топлива.

Циклоалканы

   Циклоалканы – предельные углеводороды с замкнутой цепью. Общая формула – СnH2n (моноциклические незамещенные).

Циклоалканы различаются по:
— величине цикла,
— количеству циклов,
— способу соединения циклов.

Моноциклические: циклопропан, циклобутан, циклопентан, циклогексанПолициклические:
а) Конденсированные (аннелированные):

б) Мостиковые:

в) Спироуглеводороды:

Теория напряжений (Байер)

   Отклонение геометрического угла от валентного угла 109о создает напряжение в цикле:

«Банановые» связи промежуточные по своему характеру между π- и σ-связями: ненасыщенность циклопропана – реакции присоединения с разрывом цикла.

Способы получения циклоалканов
1. Дегидрирование дигалогеналканов (вариант реакции Вюрца):

2. Циклоприсоединение:

3. Диеновый синтез (реакция Дильса-Альдера):

Химические свойства циклоалканов

1. Реакции малых циклов:

2. Реакции средних циклов практически такие же, как и для ациклических алканов.

Непредельные углеводороды

Химические и физические свойства алкенов

Алкены (этиленовые углеводороды) – органические соединения, содержащие одну двойную связь. Температура плавления и кипения увеличивается по гомологическому ряду. При нормальных условиях с этена по бутен – газы, с пентена по гептадецен – жидкости, а далее твердые вещества. Они не растворяются в воде, но растворимы в эфирах. 

π- связь менее прочная, чем σ-связь. Это связано с тем, что у негибридных облаков глубина перекрывания меньше. Для алкенов наиболее характерны реакции присоединения. Кроме того, алкены – это доноры электронов и их рассматривают как основания Льюиса. 

I. Реакции присоединения

Электроны π-связи находятся вне плоскости, поэтому они более доступны для атакующей электрофильной частицы. 

  1. Гидрирование

    Реакция протекает под воздействием температуры и катализатора никеля. 

    CH3-CH=CH2 + H2 → CH3-CH2-CH3

  2. Гидрогалогенирование

    CH2=CH2 + HCl → CH3-CH2-Cl 

    Реакционная способность уменьшается в ряду HJ-HBr-HCl-HF. В этих реакциях действует правило Марковникова. Он утверждал, что при взаимодействии галогеноводородов или воды с несимметричными алкенами, водород присоединяется к более гидрированному атому углерода, а галоген – к менее. 

    Правило имеет несколько исключений.

    • Перекисный эффект Карыша.

      Реакция подразумевает присоединение бромоводорода в присутствии перекиси водорода. 

      CH3-CH=CH2 + HBr → CH3-CH2-CH2-Br

    • Присутствие в молекуле алкена электроно-акцепторных функциональных групп в sp3-части. 

      F3C-CH=CH2 + HBr → F3C-CH2-CH2-Br

  3. Галогенирование

    CH2=CH2 + Br2 → Br-CH2-CH2-Br

  4. Гидратация

    Спирты образуются при присоединении алкенов с водой в присутствии серной кислоты, высоких температурах и при оксиде алюминия.

    CH2=CH2 + HOH → CH3-CH2-OH 

II. Реакции полимеризации

Полимер – это соединение, состоящее из множества мономеров. Полимеризация не приводит к изменению качественного и количественного состава мономеров. Получение полиэтилена из этена имеет цепной или ступенчатый характер. 

  • n CH2=CH2 → (-CH2-CH2-)
  • n CH3-CH=CH2 → (-CH2-CH(CH3)-)n 

III. Реакции замещения (галогенирование)

Реакции замещения водорода могут проходить и у непредельных алкенов, но в их sp3-части. Проходят при жестких условиях – температура свыше 500°С.

CH3-CH2-CH2=CH2 + Cl2 → CH3-CH(Cl)-CH=CH2 + HCl 

IV. Окисление

Идет легко и образует разные продукты в зависимости от условий. 

  1. Горение

    Алкены горят желтым светящимся пламенем. 

    CnH2n + O2 → CO2 + H2O

  2. Неполное окисление

    Осуществляется в нейтральной среде при окислении с помощью перманганата калия. В результате образуются диолы, причем гидроксильные группы присоединяются к атомам углерода кратной связи.

     3 CH2=CH2 +4 H2O + 2 KMnO4 → 3 HO-CH2-CH2-OH + 2 MnO2 + 2 KOH 

  3. Жесткое окисление

    Проходит в кислой среде. При окислении с помощью кипящего раствора перманганата калия происходит полное разрушение кратной связи, и атомы углероды способны создать карбоновую кислоту или углекислый газ. 

    5 CH2=CH2 +18 H2SO4 + 12 KMnO4→ 10 CO2 + 12 MnSO4 + 6 K2SO4 + 28 H2O CH3-CH=CH2 + 3 H2SO4 + 2 KMnO4 → CH3-COOH + CO2 + 2 MnSO4 + K2SO4 + 4 H2O

    В симметричной молекуле алкена образуется две молекулы одной и той же кислоты. 

    Если в соединении при кратной связи содержится два углеродных заместителя, то при окислении происходит образование кетона.

    5 (CH3)2-C=CH-CH3 + 8 KMnO4 + 9 H2SO4 → 5 CH3-COOH + 5 CH3-C(O)-CH3 + 6 MnSO4 + 3 K2SO4 + 9 H2O

    Жесткое окисление проходит и в щелочной среде. 

    CH3-CH=CH2 + 10 KMnO4 + 13 KOH → CH3-COOH + K2SO4 + 10 K2MnO4 + 8 H2O

    Те же реакции проходят в присутствии дихромата калия. 

    Алкены – это исходный продукт в производстве полимеров и других органических веществ. 

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия  изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН2=СН2+ Br2 → CH2Br-CH2Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n + (3/2)nO2 → nCO2 + nH2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

3C2H4 + 2KMnO4 + 4H2O → 3CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 12H2O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

CH3CH=CH2 + 2KMnO4 + 3H2SO4 → CH3COOH + CO2 + 2MnSO4 + K2SO4 + 4H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Алканы. Циклоалканы

Алканы (парафины) – это соединения углерода с водородом, в молекулах которых атомы углерода соединены между собой одинарной связью (предельные углеводороды). Общая формула гомологического ряда алканов СnН2n+2. Радикал, получающийся при отрыве одного атома водорода от молекулы предельного углеводорода, называется алкил, общая формула алкилов СnН2n+1.

Формулы и названия первых шести алканов (С1–С6) и отвечающих им радикалов:

Для радикала С5Н11 использование названия амил не рекомендуется. Для составления названий алканов с разветвленной цепью, например

выбирают самую длинную углеродную цепь (в примере – 5 атомов) и получают основу названия (5 – пентан). Нумеруют цепь (от 1 до 5) так, чтобы заместители (–СН3) получили наименьшие номера (2 и 3). В названии арабскими цифрами указывают положение заместителей, а приставками ди – 2, три – 3, тетра – 4 и т. д. – число одинаковых заместителей. Таким образом, в нашем примере алкан должен быть назван 2,3-диметилпентан.

При наличии разных заместителей их названия расставляют по алфавиту, т. е., например, сначала метил, а затем этил.

Для некоторых разветвленных предельных углеводородов используются, наравне с систематическими, традиционные названия, например, для алканов состава С4Н10 и С5Н12 с формулами:

Такие же названия используются для разветвленных радикалов:

При обычных условиях первые алканы – метан, этан, пропан и бутан (С1–С4) – представляют собой газы без цвета и запаха, малорастворимые в воде. Последующие гомологи (С5–C15) – жидкости (при 20 °C), высшие гомологи (C16 и выше) – твердые вещества.

В алканах атомные орбитали углерода имеют sр3-гибридизацию; четыре электронных облака атома углерода направлены в вершины тетраэдра под углами 109,5°. Ковалентные связи, образуемые каждым атомом углерода, в алканах малополярны.

Поэтому алканы – сравнительно инертные вещества, вступают только в реакции замещения, протекающие с симметричным (радикальным) разрывом связей С – Н. Эти реакции обычно идут в жестких условиях (высокая температура, освещение). В результате становится возможным замещение водорода на галоген (CI, Br) и нитрогруппу (NO2), например, при обработке метана хлором:

Вторая и последующие стадии реакции протекают легче, чем первая, из-за смещения электронной плотности к атому хлора:

и увеличения подвижности остающихся атомов водорода. Названия продуктов: СН3Cl – хлорметан, СН2Cl2 – дихлорметан, СНCl3 – трихлорметан (хлороформ), СCl4 – тетрахлорметан (тетрахлорид углерода).

В тех алканах, где кроме первичных есть также вторичные и третичные атомы углерода, замещение обычно протекает с образованием смеси однозамещенных продуктов (т. е. в каждой молекуле замещается один атом водорода), например:

Циклоалканы – предельные углеводороды циклического строения, общая формула гомологического ряда СnH2n (n ≥ 3), формула совпадает с таковой для алкенов. Важнейшие циклоалканы:

При комнатной температуре С5Н10 и С6Н12 – бесцветные жидкости, малорастворимые в воде. Химические свойства циклоалканов подобны свойствам алканов, например:

Получение: источниками алканов и циклоалканов в промышленности служат нефть, природный газ, каменный уголь. В лаборатории применяют такие способы синтеза алканов:

1) реакция Вюрца – действие натрия на галогенпроизводные углеводородов:

2) каталитическое гидрирование этиленовых углеводородов (катализаторы Pt, Pd, Ni):

3) сплавление солей карбоновых кислот с гидроксидом натрия:

Циклоалканы синтезируют из дигалогенпроизводных алканов:

Алканы широко используются как исходное сырье в химической промышленности, моторное топливо (бензин, керосин и др.); циклоалканы применяются в органическом синтезе.

При горении метана выделяется много теплоты:

+ 880 кДж

Поэтому его (в виде природного газа) применяют в качестве топлива в быту и в промышленности.

39.190. Углеводороды – алканы, алкены, циклоалканы

Алканы и циклоалканы

Алканы (предельные или насыщенные углеводороды, парафины) — углеводороды, атомы углерода в которых соединены простыми связями. Общая формула: CnH2n+2. Соотношение числа атомов водорода и углерода в молекулах алканов максимально по сравнению с молекулами углеводородов других классов.

Алканы

Ряд метана

Формула

Название

СН4

Метан

С2Н6

Этан

С3Н8

Пропан

С4Н10

Бутан

С5Н12

Пентан

С6Н14

Гексан

С7Н16

Гептан

С8Н18

Октан

С9Н20

Нонан

С10Н22

Декан

Таблица изомеров и название радикалов

При замыкании углеводородной цепи в цикл с потерей двух атомов водорода образуются моноциклоалканы с общей формулой CnH2n. Циклизация начинается с C3, названия образуются от Cn с префиксом цикло–:

Изомерия алканов и циклоалканов:

1. Углеродного скелета

Пространственные изомеры могут быть у циклоалканов:

Конформеры находятся в динамическом равновесии и превращаются друг в друга через нестабильные формы. Неустойчивость плоских циклов вызвана значительной деформацией валентных углов. При сохранении тетраэдрических валентных углов для циклогексана C6H12 возможны две устойчивые конформации: в форме кресла и в форме ванны:

Химические cвойства алканов

1. Галогенирование:

СH4+Cl2=CH3Cl+HCl

2. Нитрование:

3. Реакции горения:

С5H12+8O2=5CO2+6H2O

4. Сульфохлорирование:

CH3(CH2)10CH3+SO2+Cl2→CH3(CH2)10CH2- SO2Cl+HCl

CH3(CH2)10CH2- SO2Cl+2NaOH→CH3(CH2)10- CH2SO3Na+NaCl

Это свойство используется при получении синтетических моющих средств.

Химические свойства циклоалканов

Наиболее устойчивыми являются 6-членные циклы, в которых отсутствуют угловое и другие виды напряжения.

1. Малые циклы (С3 — С4) довольно легко вступают в реакции гидрирования: 

Циклопропан и его производные присоединяют галогены и галогеноводороды:

В других циклах (начиная с С5) угловое напряжение снимается благодаря неплоскому строению молекул. Поэтому для циклоалканов (С5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т.е. реакции замещения.

2. Эти соединения, подобно алканам, вступают также в реакции дегидрирования, окисления в присутствии катализатора и др. 

3. Окисление циклоалканов (циклогексан).

Столь резкое отличие в свойствах циклоалканов в зависимости от размеров цикла приводит к необходимости рассматривать не общий гомологический ряд циклоалканов, а отдельные их ряды по размерам цикла. Например, в гомологический ряд циклопропана входят: циклопропан С3Н6, метилциклопропан С4Н8, этилциклопропан С5Н10 и т.д.

Алкены

Алке́ны (олефины, этиленовые углеводороды) — ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n.

Алкены

Ряд этилена

Формула

Название

С2Н4

Этен

С3Н6

Пропен

С4Н8

Бутен

С5Н10

Пентен

С6Н12

Гексен

С7Н14

Гептен

С8Н16

Октен

С9Н18

Нонен

С10Н20

Декен

Виды изомерии:

Помимо изомерии, связанной со строением углеродной цепи, в ряду олефинов наблюдается изомерия положения двойной связи. Кроме того, у олефинов имеет место пространственная (геометрическая) или цис-транс-изомерия.

Для изучения материала по названному виду изомерии необходимо просмотреть анимационный фильм “Цис-транс-изомерия в ряду алкенов”

Обращаем внимание на то, что текст, сопровождающий этот фильм. в полном объеме перенесен в данный подраздел и ниже следует

Цис-транс-изомерия в ряду алкенов

Наряду с изомерией, связанной со строением углеродного скелета и положением двойной связи, в ряду алкенов имеет место геометрическая или цис-транс-изомерия. Ее существование обусловлено отсутствием свободного вращения атомов, связанных двойной связью.

Метильные группы в приведенных примерах могут располагаться как по одну сторону двойной связи (такой изомер называется цис-изомером), так и по разные стороны (такой изомер называется транс-изомером). Названия упомянутых изомеров происходят от латинского cis — на этой стороне и trans- через, на другой стороне. Превращение изомеров друг в друга невозможно без разрыва двойной связи”.

Химические свойства алкенов:

1. Присоединение галогенов.

CH2=CH-CH3+Cl2→CH2Cl-CHCl-CH3

2. Присоединение водорода.

CH2 = CH-CH3+Н2→CH3-CH2-CH3

3. Присоединение галогенводородов.

CH2 = CH-CH3+НCl→CH3-CHCl-CH3

Присоединение протекает по правилу Марковникова (водород присоединяется к наиболее гидрогенизированному атому углерода).

4. Присоединение воды.

5. Окисление перманганатом калия в нейтральной или слабощелочной среде (реакция Вагнера).

6. Полимеризация алкенов.

Прочитано
Отметь, если полностью прочитал текст

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Формула науки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: